Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Sep 1;98(5):1076–1080. doi: 10.1172/JCI118887

Antisense technology reveals the alpha2A adrenoceptor to be the subtype mediating the hypnotic response to the highly selective agonist, dexmedetomidine, in the locus coeruleus of the rat.

T Mizobe 1, K Maghsoudi 1, K Sitwala 1, G Tianzhi 1, J Ou 1, M Maze 1
PMCID: PMC507526  PMID: 8787667

Abstract

Alpha2 adrenergic agonists are used in the anesthetic management of the surgical patient for their sedative/hypnotic properties although the alpha2 adrenoceptor subtype responsible for these anesthetic effects is not known. Using a gene-targeting strategy, it is possible to specifically reduce the expression of the individual adrenoceptors expressed in the central nervous system and to thereby determine their role in hypnotic action. Stably transfected cell lines (PC 124D for rat alpha2A; NIH3T3 for rat alpha2C adrenoceptors) were exposed to 5 microM antisense oligodeoxynucleotides (ODNs) for alpha2A and alpha2C adrenergic receptor subtypes for 3 d. Individual receptor subtype expression, as determined by radiolabeled ligand binding, was selectively decreased only by the appropriate antisense ODNs and not by the "scrambled" ODNs. These antisense ODNs were then administered three times, on alternate days, into the locus coeruleus of chronically cannulated rats and their hypnotic response to dexmedetomidine (an alpha2 agonist) was determined. Only the alpha2A antisense ODNs significantly change the hypnotic response causing both an increase in latency to, and a decrease in duration of, the loss of righting reflex following dexmedetomidine; hypnotic response had normalized 8 d after stopping the ODNs. Therefore, the alpha2A adrenoceptor subtype is responsible for the hypnotic response to dexmedetomidine in the locus coeruleus of the rat.

Full Text

The Full Text of this article is available as a PDF (197.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler C. H., Meller E., Goldstein M. Recovery of alpha 2-adrenoceptor binding and function after irreversible inactivation by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). Eur J Pharmacol. 1985 Oct 8;116(1-2):175–178. doi: 10.1016/0014-2999(85)90200-6. [DOI] [PubMed] [Google Scholar]
  2. Akabayashi A., Wahlestedt C., Alexander J. T., Leibowitz S. F. Specific inhibition of endogenous neuropeptide Y synthesis in arcuate nucleus by antisense oligonucleotides suppresses feeding behavior and insulin secretion. Brain Res Mol Brain Res. 1994 Jan;21(1-2):55–61. doi: 10.1016/0169-328x(94)90377-8. [DOI] [PubMed] [Google Scholar]
  3. Bousquet P., Feldman J., Tibirica E., Bricca G., Greney H., Dontenwill M., Stutzmann J., Belcourt A. Imidazoline receptors. A new concept in central regulation of the arterial blood pressure. Am J Hypertens. 1992 Apr;5(4 Pt 2):47S–50S. [PubMed] [Google Scholar]
  4. Correa-Sales C., Nacif-Coelho C., Reid K., Maze M. Inhibition of adenylate cyclase in the locus coeruleus mediates the hypnotic response to an alpha 2 agonist in the rat. J Pharmacol Exp Ther. 1992 Dec;263(3):1046–1049. [PubMed] [Google Scholar]
  5. Correa-Sales C., Rabin B. C., Maze M. A hypnotic response to dexmedetomidine, an alpha 2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology. 1992 Jun;76(6):948–952. doi: 10.1097/00000542-199206000-00013. [DOI] [PubMed] [Google Scholar]
  6. Correa-Sales C., Reid K., Maze M. Pertussis toxin-mediated ribosylation of G proteins blocks the hypnotic response to an alpha 2-agonist in the locus coeruleus of the rat. Pharmacol Biochem Behav. 1992 Nov;43(3):723–727. doi: 10.1016/0091-3057(92)90400-a. [DOI] [PubMed] [Google Scholar]
  7. De Vos H., Vauquelin G., De Keyser J., De Backer J. P., Van Liefde I. Regional distribution of alpha 2A- and alpha 2B-adrenoceptor subtypes in postmortem human brain. J Neurochem. 1992 Apr;58(4):1555–1560. doi: 10.1111/j.1471-4159.1992.tb11378.x. [DOI] [PubMed] [Google Scholar]
  8. Duzic E., Lanier S. M. Factors determining the specificity of signal transduction by guanine nucleotide-binding protein-coupled receptors. III. Coupling of alpha 2-adrenergic receptor subtypes in a cell type-specific manner. J Biol Chem. 1992 Nov 25;267(33):24045–24052. [PubMed] [Google Scholar]
  9. Handy D. E., Flordellis C. S., Bogdanova N. N., Bresnahan M. R., Gavras H. Diverse tissue expression of rat alpha 2-adrenergic receptor genes. Hypertension. 1993 Jun;21(6 Pt 1):861–865. doi: 10.1161/01.hyp.21.6.861. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Lawhead R. G., Blaxall H. S., Bylund D. B. Alpha-2A is the predominant alpha-2 adrenergic receptor subtype in human spinal cord. Anesthesiology. 1992 Nov;77(5):983–991. doi: 10.1097/00000542-199211000-00022. [DOI] [PubMed] [Google Scholar]
  12. MacDonald E., Scheinin M. Distribution and pharmacology of alpha 2-adrenoceptors in the central nervous system. J Physiol Pharmacol. 1995 Sep;46(3):241–258. [PubMed] [Google Scholar]
  13. Mahan L. C., McKernan R. M., Insel P. A. Metabolism of alpha- and beta-adrenergic receptors in vitro and in vivo. Annu Rev Pharmacol Toxicol. 1987;27:215–235. doi: 10.1146/annurev.pa.27.040187.001243. [DOI] [PubMed] [Google Scholar]
  14. Milligan J. F., Matteucci M. D., Martin J. C. Current concepts in antisense drug design. J Med Chem. 1993 Jul 9;36(14):1923–1937. doi: 10.1021/jm00066a001. [DOI] [PubMed] [Google Scholar]
  15. Mizobe T., Maze M. Alpha 2-adrenoceptor agonists and anesthesia. Int Anesthesiol Clin. 1995 Winter;33(1):81–102. doi: 10.1097/00004311-199500000-00005. [DOI] [PubMed] [Google Scholar]
  16. Mizobe T., Maze M., Lam V., Suryanarayana S., Kobilka B. K. Arrangement of transmembrane domains in adrenergic receptors. Similarity to bacteriorhodopsin. J Biol Chem. 1996 Feb 2;271(5):2387–2389. doi: 10.1074/jbc.271.5.2387. [DOI] [PubMed] [Google Scholar]
  17. Nacif-Coelho C., Correa-Sales C., Chang L. L., Maze M. Perturbation of ion channel conductance alters the hypnotic response to the alpha 2-adrenergic agonist dexmedetomidine in the locus coeruleus of the rat. Anesthesiology. 1994 Dec;81(6):1527–1534. doi: 10.1097/00000542-199412000-00029. [DOI] [PubMed] [Google Scholar]
  18. Nicholas A. P., Pieribone V., Hökfelt T. Distributions of mRNAs for alpha-2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J Comp Neurol. 1993 Feb 22;328(4):575–594. doi: 10.1002/cne.903280409. [DOI] [PubMed] [Google Scholar]
  19. Ordway G. A., Jaconetta S. M., Halaris A. E. Characterization of subtypes of alpha-2 adrenoceptors in the human brain. J Pharmacol Exp Ther. 1993 Feb;264(2):967–976. [PubMed] [Google Scholar]
  20. Scheinin M., Lomasney J. W., Hayden-Hixson D. M., Schambra U. B., Caron M. G., Lefkowitz R. J., Fremeau R. T., Jr Distribution of alpha 2-adrenergic receptor subtype gene expression in rat brain. Brain Res Mol Brain Res. 1994 Jan;21(1-2):133–149. doi: 10.1016/0169-328x(94)90386-7. [DOI] [PubMed] [Google Scholar]
  21. Standifer K. M., Chien C. C., Wahlestedt C., Brown G. P., Pasternak G. W. Selective loss of delta opioid analgesia and binding by antisense oligodeoxynucleotides to a delta opioid receptor. Neuron. 1994 Apr;12(4):805–810. doi: 10.1016/0896-6273(94)90333-6. [DOI] [PubMed] [Google Scholar]
  22. Steffen V., Vizuete M. L., Machado A., Cano J. The effect of a vitamin E-deficient diet on amino acid levels in the substantia nigra, striatum and hippocampus of rats. Life Sci. 1994;54(5):375–379. doi: 10.1016/0024-3205(94)00794-2. [DOI] [PubMed] [Google Scholar]
  23. Stein C. A., Cheng Y. C. Antisense oligonucleotides as therapeutic agents--is the bullet really magical? Science. 1993 Aug 20;261(5124):1004–1012. doi: 10.1126/science.8351515. [DOI] [PubMed] [Google Scholar]
  24. Tanelian D. L., Kosek P., Mody I., MacIver M. B. The role of the GABAA receptor/chloride channel complex in anesthesia. Anesthesiology. 1993 Apr;78(4):757–776. doi: 10.1097/00000542-199304000-00020. [DOI] [PubMed] [Google Scholar]
  25. Wahlestedt C., Golanov E., Yamamoto S., Yee F., Ericson H., Yoo H., Inturrisi C. E., Reis D. J. Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions. Nature. 1993 May 20;363(6426):260–263. doi: 10.1038/363260a0. [DOI] [PubMed] [Google Scholar]
  26. Wahlestedt C., Pich E. M., Koob G. F., Yee F., Heilig M. Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligodeoxynucleotides. Science. 1993 Jan 22;259(5094):528–531. doi: 10.1126/science.8380941. [DOI] [PubMed] [Google Scholar]
  27. Wamsley J. K., Alburges M. E., Hunt M. A., Bylund D. B. Differential localization of alpha 2-adrenergic receptor subtypes in brain. Pharmacol Biochem Behav. 1992 Feb;41(2):267–273. doi: 10.1016/0091-3057(92)90097-y. [DOI] [PubMed] [Google Scholar]
  28. Zeng D. W., Lynch K. R. Distribution of alpha 2-adrenergic receptor mRNAs in the rat CNS. Brain Res Mol Brain Res. 1991 Jun;10(3):219–225. doi: 10.1016/0169-328x(91)90064-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES