Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Sep 1;98(5):1174–1184. doi: 10.1172/JCI118901

Cross-linking of the dermo-epidermal junction of skin regenerating from keratinocyte autografts. Anchoring fibrils are a target for tissue transglutaminase.

M Raghunath 1, B Höpfner 1, D Aeschlimann 1, U Lüthi 1, M Meuli 1, S Altermatt 1, R Gobet 1, L Bruckner-Tuderman 1, B Steinmann 1
PMCID: PMC507540  PMID: 8787681

Abstract

Since transglutaminases create covalent gamma-glutamyl-epsilon-lysine cross-links between extracellular matrix proteins they are prime candidates for stabilizing tissue during wound healing. Therefore, we studied the temporo-spatial expression of transglutaminase activity in skin regenerating from cultured epithelial autografts in severely burned children by the specific incorporation of monodansylcadaverine into cryostat sections from skin biopsies obtained between 5 d to 17 mo after grafting. The dansyl label was subsequently immunolocalized in the epidermis, dermal connective tissue, and along the basement membrane. Incubation of cryosections of normal and regenerating skin with purified tissue transglutaminase confirmed the dermo-epidermal junction and the papillary dermis as targets for this enzyme and revealed that in regenerating skin transamidation of the basement membrane zone was completed only 4-5 mo after grafting. Immunoelectron microscopy revealed that three distinct regions on the central portion of anchoring fibrils were positive for monodansylcadaverine in normal skin which were negative during the initial phase of de novo formation of anchoring fibrils in regenerating skin. Biochemically, we identified collagen VII as potential substrate for tissue transglutaminase. Thus, tissue transglutaminase appears to play an important role not only in cross-linking of the papillary dermis but also of the dermo-epidermal junction in particular.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aeschlimann D., Kaupp O., Paulsson M. Transglutaminase-catalyzed matrix cross-linking in differentiating cartilage: identification of osteonectin as a major glutaminyl substrate. J Cell Biol. 1995 May;129(3):881–892. doi: 10.1083/jcb.129.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aeschlimann D., Paulsson M. Cross-linking of laminin-nidogen complexes by tissue transglutaminase. A novel mechanism for basement membrane stabilization. J Biol Chem. 1991 Aug 15;266(23):15308–15317. [PubMed] [Google Scholar]
  3. Aeschlimann D., Paulsson M., Mann K. Identification of Gln726 in nidogen as the amine acceptor in transglutaminase-catalyzed cross-linking of laminin-nidogen complexes. J Biol Chem. 1992 Jun 5;267(16):11316–11321. [PubMed] [Google Scholar]
  4. Aeschlimann D., Paulsson M. Transglutaminases: protein cross-linking enzymes in tissues and body fluids. Thromb Haemost. 1994 Apr;71(4):402–415. [PubMed] [Google Scholar]
  5. Aeschlimann D., Wetterwald A., Fleisch H., Paulsson M. Expression of tissue transglutaminase in skeletal tissues correlates with events of terminal differentiation of chondrocytes. J Cell Biol. 1993 Mar;120(6):1461–1470. doi: 10.1083/jcb.120.6.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barry E. L., Mosher D. F. Binding and degradation of blood coagulation factor XIII by cultured fibroblasts. J Biol Chem. 1990 Jun 5;265(16):9302–9307. [PubMed] [Google Scholar]
  7. Barsigian C., Stern A. M., Martinez J. Tissue (type II) transglutaminase covalently incorporates itself, fibrinogen, or fibronectin into high molecular weight complexes on the extracellular surface of isolated hepatocytes. Use of 2-[(2-oxopropyl)thio] imidazolium derivatives as cellular transglutaminase inactivators. J Biol Chem. 1991 Nov 25;266(33):22501–22509. [PubMed] [Google Scholar]
  8. Bruckner-Tuderman L., Nilssen O., Zimmermann D. R., Dours-Zimmermann M. T., Kalinke D. U., Gedde-Dahl T., Jr, Winberg J. O. Immunohistochemical and mutation analyses demonstrate that procollagen VII is processed to collagen VII through removal of the NC-2 domain. J Cell Biol. 1995 Oct;131(2):551–559. doi: 10.1083/jcb.131.2.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bruckner-Tuderman L., Schnyder U. W., Winterhalter K. H., Bruckner P. Tissue form of type VII collagen from human skin and dermal fibroblasts in culture. Eur J Biochem. 1987 Jun 15;165(3):607–611. doi: 10.1111/j.1432-1033.1987.tb11483.x. [DOI] [PubMed] [Google Scholar]
  10. Burgeson R. E. Type VII collagen, anchoring fibrils, and epidermolysis bullosa. J Invest Dermatol. 1993 Sep;101(3):252–255. doi: 10.1111/1523-1747.ep12365129. [DOI] [PubMed] [Google Scholar]
  11. Candi E., Melino G., Mei G., Tarcsa E., Chung S. I., Marekov L. N., Steinert P. M. Biochemical, structural, and transglutaminase substrate properties of human loricrin, the major epidermal cornified cell envelope protein. J Biol Chem. 1995 Nov 3;270(44):26382–26390. doi: 10.1074/jbc.270.44.26382. [DOI] [PubMed] [Google Scholar]
  12. Compton C. C., Gill J. M., Bradford D. A., Regauer S., Gallico G. G., O'Connor N. E. Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscopic and immunohistochemical study. Lab Invest. 1989 May;60(5):600–612. [PubMed] [Google Scholar]
  13. Connellan J. M., Chung S. I., Whetzel N. K., Bradley L. M., Folk J. E. Structural properties of guinea pig liver transglutaminase. J Biol Chem. 1971 Feb 25;246(4):1093–1098. [PubMed] [Google Scholar]
  14. Dolynchuk K. N., Bendor-Samuel R., Bowness J. M. Effect of putrescine on tissue transglutaminase activity in wounds: decreased breaking strength and increased matrix fucoprotein solubility. Plast Reconstr Surg. 1994 Mar;93(3):567–573. [PubMed] [Google Scholar]
  15. Eitan S., Solomon A., Lavie V., Yoles E., Hirschberg D. L., Belkin M., Schwartz M. Recovery of visual response of injured adult rat optic nerves treated with transglutaminase. Science. 1994 Jun 17;264(5166):1764–1768. doi: 10.1126/science.7911602. [DOI] [PubMed] [Google Scholar]
  16. Fesus L., Davies P. J., Piacentini M. Apoptosis: molecular mechanisms in programmed cell death. Eur J Cell Biol. 1991 Dec;56(2):170–177. [PubMed] [Google Scholar]
  17. Fesus L., Metsis M. L., Muszbek L., Koteliansky V. E. Transglutaminase-sensitive glutamine residues of human plasma fibronectin revealed by studying its proteolytic fragments. Eur J Biochem. 1986 Jan 15;154(2):371–374. doi: 10.1111/j.1432-1033.1986.tb09407.x. [DOI] [PubMed] [Google Scholar]
  18. Folk J. E., Finlayson J. S. The epsilon-(gamma-glutamyl)lysine crosslink and the catalytic role of transglutaminases. Adv Protein Chem. 1977;31:1–133. doi: 10.1016/s0065-3233(08)60217-x. [DOI] [PubMed] [Google Scholar]
  19. Gallico G. G., 3rd, O'Connor N. E., Compton C. C., Kehinde O., Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med. 1984 Aug 16;311(7):448–451. doi: 10.1056/NEJM198408163110706. [DOI] [PubMed] [Google Scholar]
  20. Gentile V., Thomazy V., Piacentini M., Fesus L., Davies P. J. Expression of tissue transglutaminase in Balb-C 3T3 fibroblasts: effects on cellular morphology and adhesion. J Cell Biol. 1992 Oct;119(2):463–474. doi: 10.1083/jcb.119.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gibran N. S., Heimbach D. M., Holbrook K. A. Immunolocalization of FXIIIa+ dendritic cells in human burn wounds. J Surg Res. 1995 Sep;59(3):378–386. doi: 10.1006/jsre.1995.1179. [DOI] [PubMed] [Google Scholar]
  22. Hohenadl C., Mann K., Mayer U., Timpl R., Paulsson M., Aeschlimann D. Two adjacent N-terminal glutamines of BM-40 (osteonectin, SPARC) act as amine acceptor sites in transglutaminaseC-catalyzed modification. J Biol Chem. 1995 Oct 6;270(40):23415–23420. doi: 10.1074/jbc.270.40.23415. [DOI] [PubMed] [Google Scholar]
  23. Huber M., Rettler I., Bernasconi K., Frenk E., Lavrijsen S. P., Ponec M., Bon A., Lautenschlager S., Schorderet D. F., Hohl D. Mutations of keratinocyte transglutaminase in lamellar ichthyosis. Science. 1995 Jan 27;267(5197):525–528. doi: 10.1126/science.7824952. [DOI] [PubMed] [Google Scholar]
  24. Kim I. G., Gorman J. J., Park S. C., Chung S. I., Steinert P. M. The deduced sequence of the novel protransglutaminase E (TGase3) of human and mouse. J Biol Chem. 1993 Jun 15;268(17):12682–12690. [PubMed] [Google Scholar]
  25. Kim S. Y., Chung S. I., Steinert P. M. Highly active soluble processed forms of the transglutaminase 1 enzyme in epidermal keratinocytes. J Biol Chem. 1995 Jul 28;270(30):18026–18035. doi: 10.1074/jbc.270.30.18026. [DOI] [PubMed] [Google Scholar]
  26. Kleman J. P., Aeschlimann D., Paulsson M., van der Rest M. Transglutaminase-catalyzed cross-linking of fibrils of collagen V/XI in A204 rhabdomyosarcoma cells. Biochemistry. 1995 Oct 24;34(42):13768–13775. doi: 10.1021/bi00042a007. [DOI] [PubMed] [Google Scholar]
  27. König A., Raghunath M., Steinmann B., Bruckner-Tuderman L. Intracellular accumulation of collagen VII in cultured keratinocytes from a patient with dominant dystrophic epidermolysis bullosa. J Invest Dermatol. 1994 Jan;102(1):105–110. doi: 10.1111/1523-1747.ep12371741. [DOI] [PubMed] [Google Scholar]
  28. Lapiere J. C., Chen J. D., Iwasaki T., Hu L., Uitto J., Woodley D. T. Type VII collagen specifically binds fibronectin via a unique subdomain within the collagenous triple helix. J Invest Dermatol. 1994 Nov;103(5):637–641. doi: 10.1111/1523-1747.ep12398270. [DOI] [PubMed] [Google Scholar]
  29. LeMosy E. K., Erickson H. P., Beyer W. F., Jr, Radek J. T., Jeong J. M., Murthy S. N., Lorand L. Visualization of purified fibronectin-transglutaminase complexes. J Biol Chem. 1992 Apr 15;267(11):7880–7885. [PubMed] [Google Scholar]
  30. Lichti U., Ben T., Yuspa S. H. Retinoic acid-induced transglutaminase in mouse epidermal cells is distinct from epidermal transglutaminase. J Biol Chem. 1985 Feb 10;260(3):1422–1426. [PubMed] [Google Scholar]
  31. Lorand L., Conrad S. M. Transglutaminases. Mol Cell Biochem. 1984;58(1-2):9–35. doi: 10.1007/BF00240602. [DOI] [PubMed] [Google Scholar]
  32. Martinez J., Chalupowicz D. G., Roush R. K., Sheth A., Barsigian C. Transglutaminase-mediated processing of fibronectin by endothelial cell monolayers. Biochemistry. 1994 Mar 8;33(9):2538–2545. doi: 10.1021/bi00175a024. [DOI] [PubMed] [Google Scholar]
  33. Nakaoka H., Perez D. M., Baek K. J., Das T., Husain A., Misono K., Im M. J., Graham R. M. Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science. 1994 Jun 10;264(5165):1593–1596. doi: 10.1126/science.7911253. [DOI] [PubMed] [Google Scholar]
  34. Nara K., Nakanishi K., Hagiwara H., Wakita K., Kojima S., Hirose S. Retinol-induced morphological changes of cultured bovine endothelial cells are accompanied by a marked increase in transglutaminase. J Biol Chem. 1989 Nov 15;264(32):19308–19312. [PubMed] [Google Scholar]
  35. Piacentini M., Cerù M. P., Dini L., Di Rao M., Piredda L., Thomazy V., Davies P. J., Fesus L. In vivo and in vitro induction of 'tissue' transglutaminase in rat hepatocytes by retinoic acid. Biochim Biophys Acta. 1992 Jun 10;1135(2):171–179. doi: 10.1016/0167-4889(92)90134-w. [DOI] [PubMed] [Google Scholar]
  36. Poon M. C., Russell J. A., Low S., Sinclair G. D., Jones A. R., Blahey W., Ruether B. A., Hoar D. I. Hemopoietic origin of factor XIII A subunits in platelets, monocytes, and plasma. Evidence from bone marrow transplantation studies. J Clin Invest. 1989 Sep;84(3):787–792. doi: 10.1172/JCI114237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Russell L. J., DiGiovanna J. J., Hashem N., Compton J. G., Bale S. J. Linkage of autosomal recessive lamellar ichthyosis to chromosome 14q. Am J Hum Genet. 1994 Dec;55(6):1146–1152. [PMC free article] [PubMed] [Google Scholar]
  38. Shainoff J. R., Urbanic D. A., DiBello P. M. Immunoelectrophoretic characterizations of the cross-linking of fibrinogen and fibrin by factor XIIIa and tissue transglutaminase. Identification of a rapid mode of hybrid alpha-/gamma-chain cross-linking that is promoted by the gamma-chain cross-linking. J Biol Chem. 1991 Apr 5;266(10):6429–6437. [PubMed] [Google Scholar]
  39. Steinert P. M., Marekov L. N. The proteins elafin, filaggrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human epidermal cornified cell envelope. J Biol Chem. 1995 Jul 28;270(30):17702–17711. doi: 10.1074/jbc.270.30.17702. [DOI] [PubMed] [Google Scholar]
  40. Thomázy V., Fésüs L. Differential expression of tissue transglutaminase in human cells. An immunohistochemical study. Cell Tissue Res. 1989 Jan;255(1):215–224. doi: 10.1007/BF00229084. [DOI] [PubMed] [Google Scholar]
  41. Tyrrell D. J., Sale W. S., Slife C. W. Fibronectin is a component of the sodium dodecyl sulfate-insoluble transglutaminase substrate. J Biol Chem. 1988 Jun 15;263(17):8464–8469. [PubMed] [Google Scholar]
  42. Upchurch H. F., Conway E., Patterson M. K., Jr, Maxwell M. D. Localization of cellular transglutaminase on the extracellular matrix after wounding: characteristics of the matrix bound enzyme. J Cell Physiol. 1991 Dec;149(3):375–382. doi: 10.1002/jcp.1041490304. [DOI] [PubMed] [Google Scholar]
  43. Wang J. Y., Johnson L. R. Role of transglutaminase and protein cross-linking in the repair of mucosal stress erosions. Am J Physiol. 1992 May;262(5 Pt 1):G818–G825. doi: 10.1152/ajpgi.1992.262.5.G818. [DOI] [PubMed] [Google Scholar]
  44. Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES