Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Sep 1;98(5):1210–1217. doi: 10.1172/JCI118904

Modulation of gene expression in subjects at risk for colorectal cancer by the chemopreventive dithiolethione oltipraz.

P J O'Dwyer 1, C E Szarka 1, K S Yao 1, T C Halbherr 1, G R Pfeiffer 1, F Green 1, J M Gallo 1, J Brennan 1, H Frucht 1, E B Goosenberg 1, T C Hamilton 1, S Litwin 1, A M Balshem 1, P F Engstrom 1, M L Clapper 1
PMCID: PMC507543  PMID: 8787684

Abstract

Prolonged exposure to mutagenic substances is strongly associated with an individual's risk of developing colorectal cancer. Clinical investigation of oltipraz as a chemopreventive agent is supported by its induction of the expression of detoxication enzymes in various tissues, and its protective activity against the formation of chemically induced colorectal tumors in animals. The goals of the present study were: to determine if oltipraz could induce detoxicating gene expression in human tissues; to identify effective non-toxic doses for more extensive clinical testing; and to establish a relationship between effects in the colon mucosa and those in a more readily available tissue, the peripheral mononuclear cell. 24 evaluable patients at high risk for colorectal cancer were treated in a dose-finding study with oltipraz 125, 250, 500, or 1,000 mg/m2 as a single oral dose. Biochemical analysis of sequential blood samples and colon mucosal biopsies revealed increases in glutathione transferase activity at the lower dose levels. These effects were not observed at the higher doses. More pronounced changes were observed in detoxicating enzyme gene expression in both tissues at all doses. Peripheral mononuclear cell and colon mRNA content for gamma-glutamylcysteine synthetase (gamma-GCS) and DT-diaphorase increased after dosing to reach a peak on day 2-4 after treatment, and declined to baseline in the subsequent 7-10 d. The extent of induction of gene expression in colon mucosa reached a peak of 5.75-fold for gamma-GCS, and a peak of 4.14-fold for DT-diaphorase at 250 mg/m2 ; higher doses were not more effective. Levels of gamma-GCS and DT-diaphorase correlated closely (P < or = 0.001) between peripheral mononuclear cells and colon mucosa both at baseline and at peak. These findings demonstrate that the administration of minimally toxic agents at low doses may modulate the expression of detoxicating genes in the tissues of individuals at high risk for cancer. Furthermore, peripheral mononuclear cells may be used as a noninvasive surrogate endpoint biomarker for the transcriptional response of normal colon mucosa to drug administration.

Full Text

The Full Text of this article is available as a PDF (209.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandrie A. K., Sundberg M. I., Seidegård J., Tornling G., Rannug A. Genetic susceptibility to lung cancer with special emphasis on CYP1A1 and GSTM1: a study on host factors in relation to age at onset, gender and histological cancer types. Carcinogenesis. 1994 Sep;15(9):1785–1790. doi: 10.1093/carcin/15.9.1785. [DOI] [PubMed] [Google Scholar]
  2. Ansher S. S., Dolan P., Bueding E. Biochemical effects of dithiolthiones. Food Chem Toxicol. 1986 May;24(5):405–415. doi: 10.1016/0278-6915(86)90205-x. [DOI] [PubMed] [Google Scholar]
  3. Ansher S. S., Dolan P., Bueding E. Chemoprotective effects of two dithiolthiones and of butylhydroxyanisole against carbon tetrachloride and acetaminophen toxicity. Hepatology. 1983 Nov-Dec;3(6):932–935. doi: 10.1002/hep.1840030608. [DOI] [PubMed] [Google Scholar]
  4. Bartram H. P., Scheppach W., Schmid H., Hofmann A., Dusel G., Richter F., Richter A., Kasper H. Proliferation of human colonic mucosa as an intermediate biomarker of carcinogenesis: effects of butyrate, deoxycholate, calcium, ammonia, and pH. Cancer Res. 1993 Jul 15;53(14):3283–3288. [PubMed] [Google Scholar]
  5. Benson A. B., 3rd Oltipraz: a laboratory and clinical review. J Cell Biochem Suppl. 1993;17F:278–291. doi: 10.1002/jcb.240531041. [DOI] [PubMed] [Google Scholar]
  6. Board P. G. Biochemical genetics of glutathione-S-transferase in man. Am J Hum Genet. 1981 Jan;33(1):36–43. [PMC free article] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Clapper M. L., Everley L. C., Strobel L. A., Townsend A. J., Engstrom P. F. Coordinate induction of glutathione S-transferase alpha, mu, and pi expression in murine liver after a single administration of oltipraz. Mol Pharmacol. 1994 Mar;45(3):469–474. [PubMed] [Google Scholar]
  9. Colditz G. A., Branch L. G., Lipnick R. J., Willett W. C., Rosner B., Posner B. M., Hennekens C. H. Increased green and yellow vegetable intake and lowered cancer deaths in an elderly population. Am J Clin Nutr. 1985 Jan;41(1):32–36. doi: 10.1093/ajcn/41.1.32. [DOI] [PubMed] [Google Scholar]
  10. Davidson N. E., Egner P. A., Kensler T. W. Transcriptional control of glutathione S-transferase gene expression by the chemoprotective agent 5-(2-pyrazinyl)-4-methyl-1,2-dithiole-3-thione (oltipraz) in rat liver. Cancer Res. 1990 Apr 15;50(8):2251–2255. [PubMed] [Google Scholar]
  11. Egner P. A., Kensler T. W., Prestera T., Talalay P., Libby A. H., Joyner H. H., Curphey T. J. Regulation of phase 2 enzyme induction by oltipraz and other dithiolethiones. Carcinogenesis. 1994 Feb;15(2):177–181. doi: 10.1093/carcin/15.2.177. [DOI] [PubMed] [Google Scholar]
  12. Fishel R., Lescoe M. K., Rao M. R., Copeland N. G., Jenkins N. A., Garber J., Kane M., Kolodner R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993 Dec 3;75(5):1027–1038. doi: 10.1016/0092-8674(93)90546-3. [DOI] [PubMed] [Google Scholar]
  13. Fryer A. A., Zhao L., Alldersea J., Boggild M. D., Perrett C. W., Clayton R. N., Jones P. W., Strange R. C. The glutathione S-transferases: polymerase chain reaction studies on the frequency of the GSTM1 0 genotype in patients with pituitary adenomas. Carcinogenesis. 1993 Apr;14(4):563–566. doi: 10.1093/carcin/14.4.563. [DOI] [PubMed] [Google Scholar]
  14. Gentilini M., Duflo B., Richard-Lenoble D., Brücker G., Danis M., Niel G., Meunier Y. Assessment of 35972 RP (oltipraz) a new antischistosomal drug against Schistosoma haematobium, Schistosoma mansoni, and Schistosoma intercalatum. Acta Trop. 1980 Sep;37(3):271–274. [PubMed] [Google Scholar]
  15. Griffith O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980 Jul 15;106(1):207–212. doi: 10.1016/0003-2697(80)90139-6. [DOI] [PubMed] [Google Scholar]
  16. Gupta I., Baptista J., Bruce W. R., Che C. T., Furrer R., Gingerich J. S., Grey A. A., Marai L., Yates P., Krepinsky J. J. Structures of fecapentaenes, the mutagens of bacterial origin isolated from human feces. Biochemistry. 1983 Jan 18;22(2):241–245. doi: 10.1021/bi00271a001. [DOI] [PubMed] [Google Scholar]
  17. Habig W. H., Jakoby W. B. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981;77:398–405. doi: 10.1016/s0076-6879(81)77053-8. [DOI] [PubMed] [Google Scholar]
  18. Horikoshi T., Danenberg K. D., Stadlbauer T. H., Volkenandt M., Shea L. C., Aigner K., Gustavsson B., Leichman L., Frösing R., Ray M. Quantitation of thymidylate synthase, dihydrofolate reductase, and DT-diaphorase gene expression in human tumors using the polymerase chain reaction. Cancer Res. 1992 Jan 1;52(1):108–116. [PubMed] [Google Scholar]
  19. Jaiswal A. K., McBride O. W., Adesnik M., Nebert D. W. Human dioxin-inducible cytosolic NAD(P)H:menadione oxidoreductase. cDNA sequence and localization of gene to chromosome 16. J Biol Chem. 1988 Sep 25;263(27):13572–13578. [PubMed] [Google Scholar]
  20. Jen J., Powell S. M., Papadopoulos N., Smith K. J., Hamilton S. R., Vogelstein B., Kinzler K. W. Molecular determinants of dysplasia in colorectal lesions. Cancer Res. 1994 Nov 1;54(21):5523–5526. [PubMed] [Google Scholar]
  21. Katz N., Rocha R. S., Chaves A. Dose-ranging clinical trial with oltipraz in schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo. 1982 Jan-Feb;24(1):40–48. [PubMed] [Google Scholar]
  22. Kensler T. W., Davidson N. E., Groopman J. D., Roebuck B. D., Prochaska H. J., Talalay P. Chemoprotection by inducers of electrophile detoxication enzymes. Basic Life Sci. 1993;61:127–136. doi: 10.1007/978-1-4615-2984-2_12. [DOI] [PubMed] [Google Scholar]
  23. Kensler T. W., Egner P. A., Dolan P. M., Groopman J. D., Roebuck B. D. Mechanism of protection against aflatoxin tumorigenicity in rats fed 5-(2-pyrazinyl)-4-methyl-1,2-dithiol-3-thione (oltipraz) and related 1,2-dithiol-3-thiones and 1,2-dithiol-3-ones. Cancer Res. 1987 Aug 15;47(16):4271–4277. [PubMed] [Google Scholar]
  24. Lafuente A., Pujol F., Carretero P., Villa J. P., Cuchi A. Human glutathione S-transferase mu (GST mu) deficiency as a marker for the susceptibility to bladder and larynx cancer among smokers. Cancer Lett. 1993 Jan 15;68(1):49–54. doi: 10.1016/0304-3835(93)90218-x. [DOI] [PubMed] [Google Scholar]
  25. Leach F. S., Nicolaides N. C., Papadopoulos N., Liu B., Jen J., Parsons R., Peltomäki P., Sistonen P., Aaltonen L. A., Nyström-Lahti M. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993 Dec 17;75(6):1215–1225. doi: 10.1016/0092-8674(93)90330-s. [DOI] [PubMed] [Google Scholar]
  26. Lothe R. A., Peltomäki P., Meling G. I., Aaltonen L. A., Nyström-Lahti M., Pylkkänen L., Heimdal K., Andersen T. I., Møller P., Rognum T. O. Genomic instability in colorectal cancer: relationship to clinicopathological variables and family history. Cancer Res. 1993 Dec 15;53(24):5849–5852. [PubMed] [Google Scholar]
  27. Massaad L., de Waziers I., Ribrag V., Janot F., Beaune P. H., Morizet J., Gouyette A., Chabot G. G. Comparison of mouse and human colon tumors with regard to phase I and phase II drug-metabolizing enzyme systems. Cancer Res. 1992 Dec 1;52(23):6567–6575. [PubMed] [Google Scholar]
  28. Meister A. Selective modification of glutathione metabolism. Science. 1983 Apr 29;220(4596):472–477. doi: 10.1126/science.6836290. [DOI] [PubMed] [Google Scholar]
  29. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ng S. Y., Gunning P., Eddy R., Ponte P., Leavitt J., Shows T., Kedes L. Evolution of the functional human beta-actin gene and its multi-pseudogene family: conservation of noncoding regions and chromosomal dispersion of pseudogenes. Mol Cell Biol. 1985 Oct;5(10):2720–2732. doi: 10.1128/mcb.5.10.2720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. O'Dwyer P. J., Yao K. S., Ford P., Godwin A. K., Clayton M. Effects of hypoxia on detoxicating enzyme activity and expression in HT29 colon adenocarcinoma cells. Cancer Res. 1994 Jun 15;54(12):3082–3087. [PubMed] [Google Scholar]
  32. Peters W. H., Kock L., Nagengast F. M., Roelofs H. M. Immunodetection with a monoclonal antibody of glutathione S-transferase mu in patients with and without carcinomas. Biochem Pharmacol. 1990 Feb 1;39(3):591–597. doi: 10.1016/0006-2952(90)90068-v. [DOI] [PubMed] [Google Scholar]
  33. Rao C. V., Tokomo K., Kelloff G., Reddy B. S. Inhibition by dietary oltipraz of experimental intestinal carcinogenesis induced by azoxymethane in male F344 rats. Carcinogenesis. 1991 Jun;12(6):1051–1055. doi: 10.1093/carcin/12.6.1051. [DOI] [PubMed] [Google Scholar]
  34. Seidegård J., Pero R. W., Markowitz M. M., Roush G., Miller D. G., Beattie E. J. Isoenzyme(s) of glutathione transferase (class Mu) as a marker for the susceptibility to lung cancer: a follow up study. Carcinogenesis. 1990 Jan;11(1):33–36. doi: 10.1093/carcin/11.1.33. [DOI] [PubMed] [Google Scholar]
  35. Strange R. C., Faulder C. G., Davis B. A., Hume R., Brown J. A., Cotton W., Hopkinson D. A. The human glutathione S-transferases: studies on the tissue distribution and genetic variation of the GST1, GST2 and GST3 isozymes. Ann Hum Genet. 1984 Jan;48(Pt 1):11–20. doi: 10.1111/j.1469-1809.1984.tb00829.x. [DOI] [PubMed] [Google Scholar]
  36. Strange R. C., Matharoo B., Faulder G. C., Jones P., Cotton W., Elder J. B., Deakin M. The human glutathione S-transferases: a case-control study of the incidence of the GST1 0 phenotype in patients with adenocarcinoma. Carcinogenesis. 1991 Jan;12(1):25–28. doi: 10.1093/carcin/12.1.25. [DOI] [PubMed] [Google Scholar]
  37. Sugimura T. Carcinogenicity of mutagenic heterocyclic amines formed during the cooking process. Mutat Res. 1985 Jun-Jul;150(1-2):33–41. doi: 10.1016/0027-5107(85)90098-3. [DOI] [PubMed] [Google Scholar]
  38. Szarka C. E., Pfeiffer G. R., Hum S. T., Everley L. C., Balshem A. M., Moore D. F., Litwin S., Goosenberg E. B., Frucht H., Engstrom P. F. Glutathione S-transferase activity and glutathione S-transferase mu expression in subjects with risk for colorectal cancer. Cancer Res. 1995 Jul 1;55(13):2789–2793. [PubMed] [Google Scholar]
  39. Tempero M. Bile acids, ornithine decarboxylase, and cell proliferation in colon cancer: a review. Dig Dis. 1986;4(1):49–56. doi: 10.1159/000171137. [DOI] [PubMed] [Google Scholar]
  40. Trock B., Lanza E., Greenwald P. Dietary fiber, vegetables, and colon cancer: critical review and meta-analyses of the epidemiologic evidence. J Natl Cancer Inst. 1990 Apr 18;82(8):650–661. doi: 10.1093/jnci/82.8.650. [DOI] [PubMed] [Google Scholar]
  41. Vogelstein B., Fearon E. R., Hamilton S. R., Kern S. E., Preisinger A. C., Leppert M., Nakamura Y., White R., Smits A. M., Bos J. L. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988 Sep 1;319(9):525–532. doi: 10.1056/NEJM198809013190901. [DOI] [PubMed] [Google Scholar]
  42. Wattenberg L. W., Bueding E. Inhibitory effects of 5-(2-pyrazinyl)-4-methyl-1,2-dithiol-3-thione (Oltipraz) on carcinogenesis induced by benzo[a]pyrene, diethylnitrosamine and uracil mustard. Carcinogenesis. 1986 Aug;7(8):1379–1381. doi: 10.1093/carcin/7.8.1379. [DOI] [PubMed] [Google Scholar]
  43. Yao K. S., Godwin A. K., Johnson S. W., Ozols R. F., O'Dwyer P. J., Hamilton T. C. Evidence for altered regulation of gamma-glutamylcysteine synthetase gene expression among cisplatin-sensitive and cisplatin-resistant human ovarian cancer cell lines. Cancer Res. 1995 Oct 1;55(19):4367–4374. [PubMed] [Google Scholar]
  44. Yao K. S., O'Dwyer P. J. Involvement of NF-kappa B in the induction of NAD(P)H:quinone oxidoreductase (DT-diaphorase) by hypoxia, oltipraz and mitomycin C. Biochem Pharmacol. 1995 Jan 31;49(3):275–282. doi: 10.1016/0006-2952(94)00544-v. [DOI] [PubMed] [Google Scholar]
  45. Zhang Y., Talalay P., Cho C. G., Posner G. H. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2399–2403. doi: 10.1073/pnas.89.6.2399. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES