Abstract
Adriamycin (ADR) is a potent anticancer drug known to cause severe cardiac toxicity. Although ADR generates free radicals, the role of free radicals in the development of cardiac toxicity and the intracellular target for ADR-induced cardiac toxicity are still not well understood. We produced three transgenic mice lines expressing increased levels of human manganese superoxide dismutase (MnSOD), a mitochondrial enzyme, as an animal model to investigate the role of ADR-mediated free radical generation in mitochondria. The human MnSOD was expressed, functionally active, and properly transported into mitochondria in the heart of transgenic mice. The levels of copper-zinc SOD, catalase, and glutathione peroxidase did not change in the transgenic mice. Electron microscopy revealed dose-dependent ultrastructural alterations with marked mitochondrial damage in nontransgenic mice treated with ADR, but not in the transgenic littermates. Biochemical analysis indicated that the levels of serum creatine kinase and lactate dehydrogenase in ADR-treated mice were significantly greater in nontransgenic than their transgenic littermates expressing a high level of human MnSOD after ADR treatment. These results support a major role for free radical generation in ADR toxicity as well as suggesting mitochondria as the critical site of cardiac injury.
Full Text
The Full Text of this article is available as a PDF (618.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amstad P., Peskin A., Shah G., Mirault M. E., Moret R., Zbinden I., Cerutti P. The balance between Cu,Zn-superoxide dismutase and catalase affects the sensitivity of mouse epidermal cells to oxidative stress. Biochemistry. 1991 Sep 24;30(38):9305–9313. doi: 10.1021/bi00102a024. [DOI] [PubMed] [Google Scholar]
- BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
- Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
- Borgstahl G. E., Parge H. E., Hickey M. J., Beyer W. F., Jr, Hallewell R. A., Tainer J. A. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell. 1992 Oct 2;71(1):107–118. doi: 10.1016/0092-8674(92)90270-m. [DOI] [PubMed] [Google Scholar]
- Ceballos I., Delabar J. M., Nicole A., Lynch R. E., Hallewell R. A., Kamoun P., Sinet P. M. Expression of transfected human CuZn superoxide dismutase gene in mouse L cells and NS20Y neuroblastoma cells induces enhancement of glutathione peroxidase activity. Biochim Biophys Acta. 1988 Jan 25;949(1):58–64. doi: 10.1016/0167-4781(88)90054-1. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Cini Neri G., Neri B., Bandinelli M., Del Tacca M., Danesi R., Riccardi R. Anthracycline cardiotoxicity: in vivo and in vitro effects on biochemical parameters and heart ultrastructure of the rat. Oncology. 1991;48(4):327–333. doi: 10.1159/000226952. [DOI] [PubMed] [Google Scholar]
- Doroshow J. H. Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res. 1983 Feb;43(2):460–472. [PubMed] [Google Scholar]
- Fridovich I. The biology of oxygen radicals. Science. 1978 Sep 8;201(4359):875–880. doi: 10.1126/science.210504. [DOI] [PubMed] [Google Scholar]
- Gunning P., Leavitt J., Muscat G., Ng S. Y., Kedes L. A human beta-actin expression vector system directs high-level accumulation of antisense transcripts. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4831–4835. doi: 10.1073/pnas.84.14.4831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hegstad A. C., Ytrehus K., Myklebust R., Jørgensen L. Ultrastructural changes in the myocardial myocytic mitochondria: crucial step in the development of oxygen radical-induced damage in isolated rat hearts? Basic Res Cardiol. 1994 Mar-Apr;89(2):128–138. doi: 10.1007/BF00788732. [DOI] [PubMed] [Google Scholar]
- Ho Y. S., Crapo J. D. Isolation and characterization of complementary DNAs encoding human manganese-containing superoxide dismutase. FEBS Lett. 1988 Mar 14;229(2):256–260. doi: 10.1016/0014-5793(88)81136-0. [DOI] [PubMed] [Google Scholar]
- Kaul N., Siveski-Iliskovic N., Hill M., Slezak J., Singal P. K. Free radicals and the heart. J Pharmacol Toxicol Methods. 1993 Oct;30(2):55–67. doi: 10.1016/1056-8719(93)90008-3. [DOI] [PubMed] [Google Scholar]
- Kawasaki S., Akiyama S., Kurokawa T., Kataoka M., Dohmitsu K., Kondoh K., Yamauchi M., Ito K., Watanabe T., Sugiyama S. Polyoxyethylene-modified superoxide dismutase reduces side effects of adriamycin and mitomycin C. Jpn J Cancer Res. 1992 Aug;83(8):899–906. doi: 10.1111/j.1349-7006.1992.tb01997.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelner M. J., Bagnell R. Alteration of endogenous glutathione peroxidase, manganese superoxide dismutase, and glutathione transferase activity in cells transfected with a copper-zinc superoxide dismutase expression vector. Explanation for variations in paraquat resistance. J Biol Chem. 1990 Jul 5;265(19):10872–10875. [PubMed] [Google Scholar]
- Kelner M. J., Bagnell R., Montoya M., Estes L., Uglik S. F., Cerutti P. Transfection with human copper-zinc superoxide dismutase induces bidirectional alterations in other antioxidant enzymes, proteins, growth factor response, and paraquat resistance. Free Radic Biol Med. 1995 Mar;18(3):497–506. doi: 10.1016/0891-5849(94)00167-i. [DOI] [PubMed] [Google Scholar]
- Laird P. W., Zijderveld A., Linders K., Rudnicki M. A., Jaenisch R., Berns A. Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 1991 Aug 11;19(15):4293–4293. doi: 10.1093/nar/19.15.4293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawrence R. A., Burk R. F. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 1976 Aug 23;71(4):952–958. doi: 10.1016/0006-291x(76)90747-6. [DOI] [PubMed] [Google Scholar]
- Lee V., Randhawa A. K., Singal P. K. Adriamycin-induced myocardial dysfunction in vitro is mediated by free radicals. Am J Physiol. 1991 Oct;261(4 Pt 2):H989–H995. doi: 10.1152/ajpheart.1991.261.4.H989. [DOI] [PubMed] [Google Scholar]
- Li Y., Huang T. T., Carlson E. J., Melov S., Ursell P. C., Olson J. L., Noble L. J., Yoshimura M. P., Berger C., Chan P. H. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995 Dec;11(4):376–381. doi: 10.1038/ng1295-376. [DOI] [PubMed] [Google Scholar]
- Mao G. D., Thomas P. D., Lopaschuk G. D., Poznansky M. J. Superoxide dismutase (SOD)-catalase conjugates. Role of hydrogen peroxide and the Fenton reaction in SOD toxicity. J Biol Chem. 1993 Jan 5;268(1):416–420. [PubMed] [Google Scholar]
- Marcillat O., Zhang Y., Davies K. J. Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin. Biochem J. 1989 Apr 1;259(1):181–189. doi: 10.1042/bj2590181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marklund S. L. Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7634–7638. doi: 10.1073/pnas.79.24.7634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumura M., Nishioka K., Fujii T., Yoshibayashi M., Nozaki K., Nakata Y., Temma S., Ueda T., Mikawa H. Age-related acute adriamycin cardiotoxicity in mice. J Mol Cell Cardiol. 1994 Jul;26(7):899–905. doi: 10.1006/jmcc.1994.1107. [DOI] [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
- McCord J. M. Human disease, free radicals, and the oxidant/antioxidant balance. Clin Biochem. 1993 Oct;26(5):351–357. doi: 10.1016/0009-9120(93)90111-i. [DOI] [PubMed] [Google Scholar]
- Mimnaugh E. G., Trush M. A., Bhatnagar M., Gram T. E. Enhancement of reactive oxygen-dependent mitochondrial membrane lipid peroxidation by the anticancer drug adriamycin. Biochem Pharmacol. 1985 Mar 15;34(6):847–856. doi: 10.1016/0006-2952(85)90766-x. [DOI] [PubMed] [Google Scholar]
- Myers C. E., McGuire W. P., Liss R. H., Ifrim I., Grotzinger K., Young R. C. Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science. 1977 Jul 8;197(4299):165–167. doi: 10.1126/science.877547. [DOI] [PubMed] [Google Scholar]
- Ogura R., Sugiyama M., Haramaki N., Hidaka T. Electron spin resonance studies on the mechanism of adriamycin-induced heart mitochondrial damages. Cancer Res. 1991 Jul 1;51(13):3555–3558. [PubMed] [Google Scholar]
- Olson R. D., Mushlin P. S. Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J. 1990 Oct;4(13):3076–3086. [PubMed] [Google Scholar]
- Oury T. D., Ho Y. S., Piantadosi C. A., Crapo J. D. Extracellular superoxide dismutase, nitric oxide, and central nervous system O2 toxicity. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9715–9719. doi: 10.1073/pnas.89.20.9715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paglia D. E., Valentine W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967 Jul;70(1):158–169. [PubMed] [Google Scholar]
- Powis G. Free radical formation by antitumor quinones. Free Radic Biol Med. 1989;6(1):63–101. doi: 10.1016/0891-5849(89)90162-7. [DOI] [PubMed] [Google Scholar]
- Richter C., Gogvadze V., Laffranchi R., Schlapbach R., Schweizer M., Suter M., Walter P., Yaffee M. Oxidants in mitochondria: from physiology to diseases. Biochim Biophys Acta. 1995 May 24;1271(1):67–74. doi: 10.1016/0925-4439(95)00012-s. [DOI] [PubMed] [Google Scholar]
- Safford S. E., Oberley T. D., Urano M., St Clair D. K. Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase. Cancer Res. 1994 Aug 15;54(16):4261–4265. [PubMed] [Google Scholar]
- Singal P. K., Deally C. M., Weinberg L. E. Subcellular effects of adriamycin in the heart: a concise review. J Mol Cell Cardiol. 1987 Aug;19(8):817–828. doi: 10.1016/s0022-2828(87)80392-9. [DOI] [PubMed] [Google Scholar]
- Siveski-Iliskovic N., Hill M., Chow D. A., Singal P. K. Probucol protects against adriamycin cardiomyopathy without interfering with its antitumor effect. Circulation. 1995 Jan 1;91(1):10–15. doi: 10.1161/01.cir.91.1.10. [DOI] [PubMed] [Google Scholar]
- Solem L. E., Henry T. R., Wallace K. B. Disruption of mitochondrial calcium homeostasis following chronic doxorubicin administration. Toxicol Appl Pharmacol. 1994 Dec;129(2):214–222. doi: 10.1006/taap.1994.1246. [DOI] [PubMed] [Google Scholar]
- Spitz D. R., Oberley L. W. An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem. 1989 May 15;179(1):8–18. doi: 10.1016/0003-2697(89)90192-9. [DOI] [PubMed] [Google Scholar]
- St Clair D. K., Holland J. C. Complementary DNA encoding human colon cancer manganese superoxide dismutase and the expression of its gene in human cells. Cancer Res. 1991 Feb 1;51(3):939–943. [PubMed] [Google Scholar]
- St Clair D. K., Wan X. S., Oberley T. D., Muse K. E., St Clair W. H. Suppression of radiation-induced neoplastic transformation by overexpression of mitochondrial superoxide dismutase. Mol Carcinog. 1992;6(4):238–242. doi: 10.1002/mc.2940060404. [DOI] [PubMed] [Google Scholar]
- Urano M., Kuroda M., Reynolds R., Oberley T. D., St Clair D. K. Expression of manganese superoxide dismutase reduces tumor control radiation dose: gene-radiotherapy. Cancer Res. 1995 Jun 15;55(12):2490–2493. [PubMed] [Google Scholar]
- Weisiger R. A., Fridovich I. Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J Biol Chem. 1973 Jul 10;248(13):4793–4796. [PubMed] [Google Scholar]
- Wispé J. R., Warner B. B., Clark J. C., Dey C. R., Neuman J., Glasser S. W., Crapo J. D., Chang L. Y., Whitsett J. A. Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury. J Biol Chem. 1992 Nov 25;267(33):23937–23941. [PubMed] [Google Scholar]
- al-Harbi M. M., al-Gharably N. M., al-Shabanah O. A., al-Bekairi A. M., Osman A. M., Tawfik H. N. Prevention of doxorubicin-induced myocardial and haematological toxicities in rats by the iron chelator desferrioxamine. Cancer Chemother Pharmacol. 1992;31(3):200–204. doi: 10.1007/BF00685548. [DOI] [PubMed] [Google Scholar]