Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Sep 15;98(6):1298–1303. doi: 10.1172/JCI118916

An intrinsic adrenergic system in mammalian heart.

M H Huang 1, D S Friend 1, M E Sunday 1, K Singh 1, K Haley 1, K F Austen 1, R A Kelly 1, T W Smith 1
PMCID: PMC507555  PMID: 8823294

Abstract

We have identified a previously undescribed intrinsic cardiac adrenergic (ICA) cell type in rodent and human heart. Northern and Western blot analyses demonstrated that ICA cell isolates contain mRNA and protein of enzymes involved in catecholamine biosynthesis. Radioenzymatic catecholamine assays also revealed that the catecholamine profile of adult rat ICA cell isolates differed from that of sympathetic neurons. Unlike sympathetic neuronal cells, isolated ICA cells have abundant clear vesicles on electron microscopy. Endogenous norepinephrine and epinephrine constitutively released by ICA cells in vitro affect the spontaneous beating rate of neonatal rat cardiac myocytes in culture. Finally, ICA cells could be identified in human fetal hearts at a developmental stage before sympathetic innervation of the heart has been documented to occur. These findings support the concept that these cells constitute an ICA signaling system capable of participating in cardiac regulation that appears to be independent of sympathetic innervation.

Full Text

The Full Text of this article is available as a PDF (508.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger H. J., Prasad S. K., Davidoff A. J., Pimental D., Ellingsen O., Marsh J. D., Smith T. W., Kelly R. A. Continual electric field stimulation preserves contractile function of adult ventricular myocytes in primary culture. Am J Physiol. 1994 Jan;266(1 Pt 2):H341–H349. doi: 10.1152/ajpheart.1994.266.1.H341. [DOI] [PubMed] [Google Scholar]
  2. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. DONALD D. E., SHEPHERD J. T. RESPONSE TO EXERCISE IN DOGS WITH CARDIAC DENERVATION. Am J Physiol. 1963 Aug;205:393–400. doi: 10.1152/ajplegacy.1963.205.2.393. [DOI] [PubMed] [Google Scholar]
  5. Dail W. G., Jr, Palmer G. C. Localization and correltion of catecholamine-containing cells with adenyl cyclase nd phosphodiesterase activities in the human fetal heart. Anat Rec. 1973 Oct;177(2):265–287. doi: 10.1002/ar.1091770208. [DOI] [PubMed] [Google Scholar]
  6. Eklund K. K., Ghildyal N., Austen K. F., Friend D. S., Schiller V., Stevens R. L. Mouse bone marrow-derived mast cells (mBMMC) obtained in vitro from mice that are mast cell-deficient in vivo express the same panel of granule proteases as mBMMC and serosal mast cells from their normal littermates. J Exp Med. 1994 Jul 1;180(1):67–73. doi: 10.1084/jem.180.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elayan H. H., Kennedy B. P., Ziegler M. G. Cardiac atria and ventricles contain different inducible adrenaline synthesising enzymes. Cardiovasc Res. 1990 Jan;24(1):53–56. doi: 10.1093/cvr/24.1.53. [DOI] [PubMed] [Google Scholar]
  8. Ellison J. P., Hibbs R. G. Catecholamine-containing cells of the guinea pig heart: an ultrastructural study. J Mol Cell Cardiol. 1974 Feb;6(1):17–26. doi: 10.1016/0022-2828(74)90003-0. [DOI] [PubMed] [Google Scholar]
  9. Hart B. B., Stanford G. G., Ziegler M. G., Lake C. R., Chernow B. Catecholamines: study of interspecies variation. Crit Care Med. 1989 Nov;17(11):1203–1222. [PubMed] [Google Scholar]
  10. Horackova M., Huang M. H., Armour J. A., Hopkins D. A., Mapplebeck C. Cocultures of adult ventricular myocytes with stellate ganglia or intrinsic cardiac neurones from guinea pigs: spontaneous activity and pharmacological properties. Cardiovasc Res. 1993 Jun;27(6):1101–1108. doi: 10.1093/cvr/27.6.1101. [DOI] [PubMed] [Google Scholar]
  11. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  12. Jacobowitz D. Histochemical studies of the relationship of chromaffin cells and adrenergic nerve fibers to the cardiac ganglia of several species. J Pharmacol Exp Ther. 1967 Nov;158(2):227–240. [PubMed] [Google Scholar]
  13. Joh T. H., Park D. H., Reis D. J. Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase: mechanism of enzyme activation. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4744–4748. doi: 10.1073/pnas.75.10.4744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaye D. M., Lefkovits J., Cox H., Lambert G., Jennings G., Turner A., Esler M. D. Regional epinephrine kinetics in human heart failure: evidence for extra-adrenal, nonneural release. Am J Physiol. 1995 Jul;269(1 Pt 2):H182–H188. doi: 10.1152/ajpheart.1995.269.1.H182. [DOI] [PubMed] [Google Scholar]
  15. Lamouroux A., Faucon Biguet N., Samolyk D., Privat A., Salomon J. C., Pujol J. F., Mallet J. Identification of cDNA clones coding for rat tyrosine hydroxylase antigen. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3881–3885. doi: 10.1073/pnas.79.12.3881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Peuler J. D., Johnson G. A. Simultaneous single isotope radioenzymatic assay of plasma norepinephrine, epinephrine and dopamine. Life Sci. 1977 Sep 1;21(5):625–636. doi: 10.1016/0024-3205(77)90070-4. [DOI] [PubMed] [Google Scholar]
  17. Rode J., Dhillon A. P., Doran J. F., Jackson P., Thompson R. J. PGP 9.5, a new marker for human neuroendocrine tumours. Histopathology. 1985 Feb;9(2):147–158. doi: 10.1111/j.1365-2559.1985.tb02431.x. [DOI] [PubMed] [Google Scholar]
  18. Rowan R. A., Billingham M. E. Myocardial innervation in long-term heart transplant survivors: a quantitative ultrastructural survey. J Heart Transplant. 1988 Nov-Dec;7(6):448–452. [PubMed] [Google Scholar]
  19. Schmechel D., Marangos P. J., Brightman M. Neurone-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature. 1978 Dec 21;276(5690):834–836. doi: 10.1038/276834a0. [DOI] [PubMed] [Google Scholar]
  20. Shaver J. A., Leon D. F., Gray S., 3rd, Leonard J. J., Bahnson H. T. Hemodynamic observations after cardiac transplantation. N Engl J Med. 1969 Oct 9;281(15):822–827. doi: 10.1056/NEJM196910092811505. [DOI] [PubMed] [Google Scholar]
  21. Springhorn J. P., Claycomb W. C. Preproenkephalin mRNA expression in developing rat heart and in cultured ventricular cardiac muscle cells. Biochem J. 1989 Feb 15;258(1):73–78. doi: 10.1042/bj2580073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spurgeon H. A., Priola D. V., Montoya P., Weiss G. K., Alter W. A., 3rd Catecholamines associated with conductile and contractile myocardium of normal and denervated dog hearts. J Pharmacol Exp Ther. 1974 Sep;190(3):466–471. [PubMed] [Google Scholar]
  23. Thomas S. A., Matsumoto A. M., Palmiter R. D. Noradrenaline is essential for mouse fetal development. Nature. 1995 Apr 13;374(6523):643–646. doi: 10.1038/374643a0. [DOI] [PubMed] [Google Scholar]
  24. Zhou Q. Y., Quaife C. J., Palmiter R. D. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature. 1995 Apr 13;374(6523):640–643. doi: 10.1038/374640a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES