Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Sep 15;98(6):1332–1343. doi: 10.1172/JCI118920

RXR alpha deficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice.

P J Gruber 1, S W Kubalak 1, T Pexieder 1, H M Sucov 1, R M Evans 1, K R Chien 1
PMCID: PMC507559  PMID: 8823298

Abstract

Retinoid-dependent pathways play a central role in regulating cardiac morphogenesis. Recently, we characterized gene-targeted RXR alpha -/- embryos, which display an atrial-like ventricular phenotype with the development of heart failure and lethality at embryonic day 14.5. To quantitate the frequency and complexity of cardiac morphogenic defects, we now use microdissection and scanning electron microscopy to examine 107 wild-type, heterozygous, and homozygous embryos at embryonic day 13.5, 14.5, and 15.5. RXR alpha -/- embryos display complex defects, including ventricular septal, atrioventricular cushion, and conotruncal ridge defects, with double outlet right ventricle, aorticopulmonary window, and persistent truncus arteriosus. In addition, heterozygous RXR alpha embryos display a predisposition for trabecular and papillary muscle defects, ventricular septal defects, conotruncal ridge defects, atrioventricular cushion defects, and pulmonic stenosis. Lastly, we show that the intermediate anatomic phenotype displayed by heterozygous embryos is mirrored in the molecular marker MLC-2a. The intermediate phenotype of RXR alpha heterozygous embryos documents a gene dosage effect for RXR alpha in maintaining normal cardiac morphogenesis. In addition, some defects in RXR alpha mutant mice are phenocopies of human congenital heart defects, thereby suggesting that a relative deficiency in RXR alpha or molecules downstream in its signaling pathway may represent congenital heart disease-susceptibility genes.

Full Text

The Full Text of this article is available as a PDF (907.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basson C. T., Cowley G. S., Solomon S. D., Weissman B., Poznanski A. K., Traill T. A., Seidman J. G., Seidman C. E. The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome) N Engl J Med. 1994 Mar 31;330(13):885–891. doi: 10.1056/NEJM199403313301302. [DOI] [PubMed] [Google Scholar]
  2. Budarf M. L., Collins J., Gong W., Roe B., Wang Z., Bailey L. C., Sellinger B., Michaud D., Driscoll D. A., Emanuel B. S. Cloning a balanced translocation associated with DiGeorge syndrome and identification of a disrupted candidate gene. Nat Genet. 1995 Jul;10(3):269–278. doi: 10.1038/ng0795-269. [DOI] [PubMed] [Google Scholar]
  3. Curran M. E., Atkinson D. L., Ewart A. K., Morris C. A., Leppert M. F., Keating M. T. The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis. Cell. 1993 Apr 9;73(1):159–168. doi: 10.1016/0092-8674(93)90168-p. [DOI] [PubMed] [Google Scholar]
  4. Dyson E., Sucov H. M., Kubalak S. W., Schmid-Schönbein G. W., DeLano F. A., Evans R. M., Ross J., Jr, Chien K. R. Atrial-like phenotype is associated with embryonic ventricular failure in retinoid X receptor alpha -/- mice. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7386–7390. doi: 10.1073/pnas.92.16.7386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goldmuntz E., Driscoll D., Budarf M. L., Zackai E. H., McDonald-McGinn D. M., Biegel J. A., Emanuel B. S. Microdeletions of chromosomal region 22q11 in patients with congenital conotruncal cardiac defects. J Med Genet. 1993 Oct;30(10):807–812. doi: 10.1136/jmg.30.10.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goldmuntz E., Driscoll D., Budarf M. L., Zackai E. H., McDonald-McGinn D. M., Biegel J. A., Emanuel B. S. Microdeletions of chromosomal region 22q11 in patients with congenital conotruncal cardiac defects. J Med Genet. 1993 Oct;30(10):807–812. doi: 10.1136/jmg.30.10.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harvey M., Vogel H., Morris D., Bradley A., Bernstein A., Donehower L. A. A mutant p53 transgene accelerates tumour development in heterozygous but not nullizygous p53-deficient mice. Nat Genet. 1995 Mar;9(3):305–311. doi: 10.1038/ng0395-305. [DOI] [PubMed] [Google Scholar]
  8. Kastner P., Grondona J. M., Mark M., Gansmuller A., LeMeur M., Decimo D., Vonesch J. L., Dollé P., Chambon P. Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell. 1994 Sep 23;78(6):987–1003. doi: 10.1016/0092-8674(94)90274-7. [DOI] [PubMed] [Google Scholar]
  9. Lammer E. J., Chen D. T., Hoar R. M., Agnish N. D., Benke P. J., Braun J. T., Curry C. J., Fernhoff P. M., Grix A. W., Jr, Lott I. T. Retinoic acid embryopathy. N Engl J Med. 1985 Oct 3;313(14):837–841. doi: 10.1056/NEJM198510033131401. [DOI] [PubMed] [Google Scholar]
  10. Li E., Sucov H. M., Lee K. F., Evans R. M., Jaenisch R. Normal development and growth of mice carrying a targeted disruption of the alpha 1 retinoic acid receptor gene. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1590–1594. doi: 10.1073/pnas.90.4.1590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lohnes D., Kastner P., Dierich A., Mark M., LeMeur M., Chambon P. Function of retinoic acid receptor gamma in the mouse. Cell. 1993 May 21;73(4):643–658. doi: 10.1016/0092-8674(93)90246-m. [DOI] [PubMed] [Google Scholar]
  12. Lufkin T., Lohnes D., Mark M., Dierich A., Gorry P., Gaub M. P., LeMeur M., Chambon P. High postnatal lethality and testis degeneration in retinoic acid receptor alpha mutant mice. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7225–7229. doi: 10.1073/pnas.90.15.7225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mendelsohn C., Lohnes D., Décimo D., Lufkin T., LeMeur M., Chambon P., Mark M. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development. 1994 Oct;120(10):2749–2771. doi: 10.1242/dev.120.10.2749. [DOI] [PubMed] [Google Scholar]
  14. Mendelsohn C., Mark M., Dollé P., Dierich A., Gaub M. P., Krust A., Lampron C., Chambon P. Retinoic acid receptor beta 2 (RAR beta 2) null mutant mice appear normal. Dev Biol. 1994 Nov;166(1):246–258. doi: 10.1006/dbio.1994.1311. [DOI] [PubMed] [Google Scholar]
  15. Moscoso G., Pexieder T. Variations in microscopic anatomy and ultrastructure of human embryonic hearts subjected to three different modes of fixation. Pathol Res Pract. 1990 Dec;186(6):768–774. doi: 10.1016/S0344-0338(11)80268-2. [DOI] [PubMed] [Google Scholar]
  16. Payne R. M., Johnson M. C., Grant J. W., Strauss A. W. Toward a molecular understanding of congenital heart disease. Circulation. 1995 Jan 15;91(2):494–504. doi: 10.1161/01.cir.91.2.494. [DOI] [PubMed] [Google Scholar]
  17. Pexieder T. Prenatal development of the endocardium: a review. Scan Electron Microsc. 1981;(Pt 2):223–253. [PubMed] [Google Scholar]
  18. Sucov H. M., Dyson E., Gumeringer C. L., Price J., Chien K. R., Evans R. M. RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev. 1994 May 1;8(9):1007–1018. doi: 10.1101/gad.8.9.1007. [DOI] [PubMed] [Google Scholar]
  19. WILSON J. G., ROTH C. B., WARKANY J. An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am J Anat. 1953 Mar;92(2):189–217. doi: 10.1002/aja.1000920202. [DOI] [PubMed] [Google Scholar]
  20. de la Chapelle A., Herva R., Koivisto M., Aula P. A deletion in chromosome 22 can cause DiGeorge syndrome. Hum Genet. 1981;57(3):253–256. doi: 10.1007/BF00278938. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES