Abstract
Hydralazine has been shown to reduce mortality in patients with congestive heart failure when given concomitantly with isosorbide dinitrate. Recently, we demonstrated that nitrate tolerance is in part due to enhanced vascular superoxide .O2- production. We sought to determine mechanisms whereby hydralazine may prevent tolerance. Rabbits either received no treatment, nitroglycerin patches (1.5 micrograms/kg/min x 3 d), hydralazine alone (10 mg/kg/d in drinking water), or hydralazine and nitroglycerin. Aortic segments were studied in organ chambers and relative rates of vascular .O2- production were determined using lucigenin-enhanced chemiluminescence. Nitroglycerin treatment markedly inhibited relaxations to nitroglycerin (maximum relaxations in untreated: 92 +/- 1 vs. 64 +/- 3% in nitroglycerin-treated patients and increased vascular .O2- production by over two-fold (P < 0.05). Treatment with hydralazine in rabbits not receiving nitroglycerin significantly decreased .O2- production in intact rabbit aorta and increased sensitivity to nitroglycerin. When given concomitantly with nitroglycerin, hydralazine completely prevented the development of nitrate tolerance and normalized endogenous rates of vascular .O2- production. Studies of vessel homogenates demonstrated that the major source of .O2- was an NADH-dependent membrane-associated oxidase displaying activities of 67 +/- 12 vs. 28 +/- 2 nmol .O2-.min-1.mg protein-1 in nitroglycerin-treated vs. untreated aortic homogenates. In additional studies, we found that acute addition of hydralazine (10 microM) to nitroglycerin-tolerant vessels immediately inhibited .O2- production and NADH oxidase activity in vascular homogenates. The chemiluminescence signal was inhibited by a recombinant heparin-binding superoxide dismutase (HBSOD) demonstrating the specificity of this assay for .O2-. These observations suggest that a specific membrane-associated oxidase is activated by chronic nitroglycerin treatment, and the activity of this oxidase is inhibited by hydralazine, providing a mechanism whereby hydralazine may prevent tolerance. The ability of hydralazine to inhibit vascular .O2- anion production represents a novel mechanism of action for this drug.
Full Text
The Full Text of this article is available as a PDF (293.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrams J. A reappraisal of nitrate therapy. JAMA. 1988 Jan 15;259(3):396–401. [PubMed] [Google Scholar]
- Atwal K. S. Pharmacology and structure-activity relationships for KATP modulators: tissue-selective KATP openers. J Cardiovasc Pharmacol. 1994;24 (Suppl 4):S12–S17. [PubMed] [Google Scholar]
- Bassenge E., Fink B., Sommer O., Huckstorf C. Long term increases in coronary arterial conductance during five day infusion of low dose nicorandil. Cardiovasc Res. 1994 Jun;28(6):912–916. doi: 10.1093/cvr/28.6.912. [DOI] [PubMed] [Google Scholar]
- Bauer J. A., Fung H. L. Concurrent hydralazine administration prevents nitroglycerin-induced hemodynamic tolerance in experimental heart failure. Circulation. 1991 Jul;84(1):35–39. doi: 10.1161/01.cir.84.1.35. [DOI] [PubMed] [Google Scholar]
- Bauer J. A., Fung H. L. Concurrent hydralazine administration prevents nitroglycerin-induced hemodynamic tolerance in experimental heart failure. Circulation. 1991 Jul;84(1):35–39. doi: 10.1161/01.cir.84.1.35. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Campbell W. B., Graham R. M., Jackson E. K., Loisel D. P., Pettinger W. A. Effect of indomethacin on hydralazine-induced renin and catecholamine release in the conscious rabbit. Br J Pharmacol. 1980;71(2):529–531. doi: 10.1111/j.1476-5381.1980.tb10968.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohn J. N., Archibald D. G., Ziesche S., Franciosa J. A., Harston W. E., Tristani F. E., Dunkman W. B., Jacobs W., Francis G. S., Flohr K. H. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N Engl J Med. 1986 Jun 12;314(24):1547–1552. doi: 10.1056/NEJM198606123142404. [DOI] [PubMed] [Google Scholar]
- Cohn J. N., Johnson G., Ziesche S., Cobb F., Francis G., Tristani F., Smith R., Dunkman W. B., Loeb H., Wong M. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991 Aug 1;325(5):303–310. doi: 10.1056/NEJM199108013250502. [DOI] [PubMed] [Google Scholar]
- Cross A. R., Jones O. T. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem J. 1986 Jul 1;237(1):111–116. doi: 10.1042/bj2370111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griendling K. K., Minieri C. A., Ollerenshaw J. D., Alexander R. W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994 Jun;74(6):1141–1148. doi: 10.1161/01.res.74.6.1141. [DOI] [PubMed] [Google Scholar]
- Hermsmeyer K., Trapani A., Abel P. W., Worcel M. Effect of hydralazine on tension and membrane potential in the rat caudal artery. J Pharmacol Exp Ther. 1983 Nov;227(2):322–326. [PubMed] [Google Scholar]
- Johnson C., Stubley-Beedham C., Stell J. G. Hydralazine: a potent inhibitor of aldehyde oxidase activity in vitro and in vivo. Biochem Pharmacol. 1985 Dec 15;34(24):4251–4256. doi: 10.1016/0006-2952(85)90280-1. [DOI] [PubMed] [Google Scholar]
- Kishi H., Kishi T., Folkers K. Bioenergetics in clinical medicine. III. Inhibition of coenzyme Q10-enzymes by clinically used anti-hypertensive drugs. Res Commun Chem Pathol Pharmacol. 1975 Nov;12(3):533–540. [PubMed] [Google Scholar]
- Kooy N. W., Royall J. A. Agonist-induced peroxynitrite production from endothelial cells. Arch Biochem Biophys. 1994 May 1;310(2):352–359. doi: 10.1006/abbi.1994.1178. [DOI] [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
- Mohazzab K. M., Kaminski P. M., Wolin M. S. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol. 1994 Jun;266(6 Pt 2):H2568–H2572. doi: 10.1152/ajpheart.1994.266.6.H2568. [DOI] [PubMed] [Google Scholar]
- Mohazzab K. M., Wolin M. S. Sites of superoxide anion production detected by lucigenin in calf pulmonary artery smooth muscle. Am J Physiol. 1994 Dec;267(6 Pt 1):L815–L822. doi: 10.1152/ajplung.1994.267.6.L815. [DOI] [PubMed] [Google Scholar]
- Münzel T., Sayegh H., Freeman B. A., Tarpey M. M., Harrison D. G. Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J Clin Invest. 1995 Jan;95(1):187–194. doi: 10.1172/JCI117637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohara Y., Peterson T. E., Harrison D. G. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest. 1993 Jun;91(6):2546–2551. doi: 10.1172/JCI116491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Packer M., Lee W. H., Kessler P. D., Gottlieb S. S., Medina N., Yushak M. Prevention and reversal of nitrate tolerance in patients with congestive heart failure. N Engl J Med. 1987 Sep 24;317(13):799–804. doi: 10.1056/NEJM198709243171304. [DOI] [PubMed] [Google Scholar]
- Rajagopalan S., Kurz S., Münzel T., Tarpey M., Freeman B. A., Griendling K. K., Harrison D. G. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest. 1996 Apr 15;97(8):1916–1923. doi: 10.1172/JCI118623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsutamoto T., Kinoshita M., Hisanaga T., Maeda Y., Maeda K., Wada A., Fukai D., Yoshida S. Comparison of hemodynamic effects and plasma cyclic guanosine monophosphate of nicorandil and nitroglycerin in patients with congestive heart failure. Am J Cardiol. 1995 Jun 1;75(16):1162–1165. doi: 10.1016/s0002-9149(99)80750-4. [DOI] [PubMed] [Google Scholar]
- Tsutamoto T., Kinoshita M., Nakae I., Maeda Y., Wada A., Yabe T., Horie H. Absence of hemodynamic tolerance to nicorandil in patients with severe congestive heart failure. Am Heart J. 1994 Apr;127(4 Pt 1):866–873. doi: 10.1016/0002-8703(94)90555-x. [DOI] [PubMed] [Google Scholar]