Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Sep 15;98(6):1471–1480. doi: 10.1172/JCI118936

Antigenic targets in tienilic acid hepatitis. Both cytochrome P450 2C11 and 2C11-tienilic acid adducts are transported to the plasma membrane of rat hepatocytes and recognized by human sera.

M A Robin 1, M Maratrat 1, M Le Roy 1, F P Le Breton 1, E Bonierbale 1, P Dansette 1, F Ballet 1, D Mansuy 1, D Pessayre 1
PMCID: PMC507575  PMID: 8823314

Abstract

Patients with tienilic acid hepatitis exhibit autoantibodies that recognize unalkylated cytochrome P450 2C9 in humans but recognize 2C11 in rats. Our aim was to determine whether the immune reaction is also directed against neoantigens. Rats were treated with tienilic acid and hepatocytes were isolated. Immunoprecipitation, immunoblotting, and flow cytometry experiments were performed with an anti-tienilic acid or an anti-cytochrome P450 2C11 antibody. Cytochrome P450 2C11 was the main microsomal or plasma membrane protein that was alkylated by tienilic acid. Inhibitors of vesicular transport decreased flow cytometric recognition of both unalkylated and tienilic acid-alkylated cytochrome P450 2C11 on the plasma membrane of cultured hepatocytes. Tienilic acid hepatitis sera that were preadsorbed on microsomes from untreated rats (to remove autoantibodies), poorly recognized untreated hepatocytes in flow cytometry experiments, but better recognized tienilic acid-treated hepatocytes. This recognition was decreased by adsorption with tienilic acid or by preexposure to the anti-tienilic acid or the anti-cytochrome P450 2C11 antibody. We conclude that cytochrome P450 2C11 is alkylated by tienilic acid and follows a vesicular route to the plasma membrane. Tienilic acid hepatitis sera contain antibodies against this tienilic acid adduct, in addition to the previously described anticytochrome P450 autoantibodies.

Full Text

The Full Text of this article is available as a PDF (328.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alves C., von Dippe P., Amoui M., Levy D. Bile acid transport into hepatocyte smooth endoplasmic reticulum vesicles is mediated by microsomal epoxide hydrolase, a membrane protein exhibiting two distinct topological orientations. J Biol Chem. 1993 Sep 25;268(27):20148–20155. [PubMed] [Google Scholar]
  2. Beaune P., Dansette P. M., Mansuy D., Kiffel L., Finck M., Amar C., Leroux J. P., Homberg J. C. Human anti-endoplasmic reticulum autoantibodies appearing in a drug-induced hepatitis are directed against a human liver cytochrome P-450 that hydroxylates the drug. Proc Natl Acad Sci U S A. 1987 Jan;84(2):551–555. doi: 10.1073/pnas.84.2.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beaune P., Pessayre D., Dansette P., Mansuy D., Manns M. Autoantibodies against cytochromes P450: role in human diseases. Adv Pharmacol. 1994;30:199–245. doi: 10.1016/s1054-3589(08)60175-1. [DOI] [PubMed] [Google Scholar]
  4. Black S. D., Martin S. T., Smith C. A. Membrane topology of liver microsomal cytochrome P450 2B4 determined via monoclonal antibodies directed to the halt-transfer signal. Biochemistry. 1994 Jun 7;33(22):6945–6951. doi: 10.1021/bi00188a025. [DOI] [PubMed] [Google Scholar]
  5. Bourdi M., Larrey D., Nataf J., Bernuau J., Pessayre D., Iwasaki M., Guengerich F. P., Beaune P. H. Anti-liver endoplasmic reticulum autoantibodies are directed against human cytochrome P-450IA2. A specific marker of dihydralazine-induced hepatitis. J Clin Invest. 1990 Jun;85(6):1967–1973. doi: 10.1172/JCI114660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bourdi M., Tinel M., Beaune P. H., Pessayre D. Interactions of dihydralazine with cytochromes P4501A: a possible explanation for the appearance of anti-cytochrome P4501A2 autoantibodies. Mol Pharmacol. 1994 Jun;45(6):1287–1295. [PubMed] [Google Scholar]
  7. Guengerich F. P., Dannan G. A., Wright S. T., Martin M. V., Kaminsky L. S. Purification and characterization of liver microsomal cytochromes p-450: electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or beta-naphthoflavone. Biochemistry. 1982 Nov 9;21(23):6019–6030. doi: 10.1021/bi00266a045. [DOI] [PubMed] [Google Scholar]
  8. Hamel E. Natural products which interact with tubulin in the vinca domain: maytansine, rhizoxin, phomopsin A, dolastatins 10 and 15 and halichondrin B. Pharmacol Ther. 1992;55(1):31–51. doi: 10.1016/0163-7258(92)90028-x. [DOI] [PubMed] [Google Scholar]
  9. Hastie S. B. Interactions of colchicine with tubulin. Pharmacol Ther. 1991;51(3):377–401. doi: 10.1016/0163-7258(91)90067-v. [DOI] [PubMed] [Google Scholar]
  10. Homberg J. C., Andre C., Abuaf N. A new anti-liver-kidney microsome antibody (anti-LKM2) in tienilic acid-induced hepatitis. Clin Exp Immunol. 1984 Mar;55(3):561–570. [PMC free article] [PubMed] [Google Scholar]
  11. Jäntti J., Kuismanen E. Effect of caffeine and reduced temperature (20 degrees C) on the organization of the pre-Golgi and the Golgi stack membranes. J Cell Biol. 1993 Mar;120(6):1321–1335. doi: 10.1083/jcb.120.6.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kenna J. G., Satoh H., Christ D. D., Pohl L. R. Metabolic basis for a drug hypersensitivity: antibodies in sera from patients with halothane hepatitis recognize liver neoantigens that contain the trifluoroacetyl group derived from halothane. J Pharmacol Exp Ther. 1988 Jun;245(3):1103–1109. [PubMed] [Google Scholar]
  13. Lecoeur S., Bonierbale E., Challine D., Gautier J. C., Valadon P., Dansette P. M., Catinot R., Ballet F., Mansuy D., Beaune P. H. Specificity of in vitro covalent binding of tienilic acid metabolites to human liver microsomes in relationship to the type of hepatotoxicity: comparison with two directly hepatotoxic drugs. Chem Res Toxicol. 1994 May-Jun;7(3):434–442. doi: 10.1021/tx00039a023. [DOI] [PubMed] [Google Scholar]
  14. Loeper J., Descatoire V., Amouyal G., Lettéron P., Larrey D., Pessayre D. Presence of covalently bound metabolites on rat hepatocyte plasma membrane proteins after administration of isaxonine, a drug leading to immunoallergic hepatitis in man. Hepatology. 1989 May;9(5):675–678. doi: 10.1002/hep.1840090503. [DOI] [PubMed] [Google Scholar]
  15. Loeper J., Descatoire V., Maurice M., Beaune P., Belghiti J., Houssin D., Ballet F., Feldmann G., Guengerich F. P., Pessayre D. Cytochromes P-450 in human hepatocyte plasma membrane: recognition by several autoantibodies. Gastroenterology. 1993 Jan;104(1):203–216. doi: 10.1016/0016-5085(93)90853-5. [DOI] [PubMed] [Google Scholar]
  16. Loeper J., Descatoire V., Maurice M., Beaune P., Feldmann G., Larrey D., Pessayre D. Presence of functional cytochrome P-450 on isolated rat hepatocyte plasma membrane. Hepatology. 1990 May;11(5):850–858. doi: 10.1002/hep.1840110521. [DOI] [PubMed] [Google Scholar]
  17. Lopez Garcia M. P., Dansette P. M., Valadon P., Amar C., Beaune P. H., Guengerich F. P., Mansuy D. Human-liver cytochromes P-450 expressed in yeast as tools for reactive-metabolite formation studies. Oxidative activation of tienilic acid by cytochromes P-450 2C9 and 2C10. Eur J Biochem. 1993 Apr 1;213(1):223–232. doi: 10.1111/j.1432-1033.1993.tb17752.x. [DOI] [PubMed] [Google Scholar]
  18. López-Garcia M. P., Dansette P. M., Mansuy D. Thiophene derivatives as new mechanism-based inhibitors of cytochromes P-450: inactivation of yeast-expressed human liver cytochrome P-450 2C9 by tienilic acid. Biochemistry. 1994 Jan 11;33(1):166–175. doi: 10.1021/bi00167a022. [DOI] [PubMed] [Google Scholar]
  19. Martin J. L., Reed G. F., Pohl L. R. Association of anti-58 kDa endoplasmic reticulum antibodies with halothane hepatitis. Biochem Pharmacol. 1993 Oct 5;46(7):1247–1250. doi: 10.1016/0006-2952(93)90474-b. [DOI] [PubMed] [Google Scholar]
  20. Miller S. G., Carnell L., Moore H. H. Post-Golgi membrane traffic: brefeldin A inhibits export from distal Golgi compartments to the cell surface but not recycling. J Cell Biol. 1992 Jul;118(2):267–283. doi: 10.1083/jcb.118.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Myrset A. H., Halvorsen B., Ording E., Helgeland L. The time courses of intracellular transport of some secretory proteins of rat liver are not affected by an induced acute phase response. Eur J Cell Biol. 1993 Feb;60(1):108–114. [PubMed] [Google Scholar]
  22. Neuberger J., Kenna J. G., Nouri Aria K., Williams R. Antibody mediated hepatocyte injury in methyl dopa induced hepatotoxicity. Gut. 1985 Nov;26(11):1233–1239. doi: 10.1136/gut.26.11.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Neuberger J., Williams R. Immune mechanisms in tienilic acid associated hepatotoxicity. Gut. 1989 Apr;30(4):515–519. doi: 10.1136/gut.30.4.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pessayre D. Role of reactive metabolites in drug-induced hepatitis. J Hepatol. 1995;23 (Suppl 1):16–24. [PubMed] [Google Scholar]
  25. Pons C., Dansette P. M., Amar C., Jaouen M., Wolf C. R., Gregeois J., Homberg J. C., Mansuy D. Detection of human hepatitis anti-liver kidney microsomes (LKM2) autoantibodies on rat liver sections is predominantly due to reactivity with rat liver P-450 IIC11. J Pharmacol Exp Ther. 1991 Dec;259(3):1328–1334. [PubMed] [Google Scholar]
  26. Pumford N. R., Martin B. M., Thomassen D., Burris J. A., Kenna J. G., Martin J. L., Pohl L. R. Serum antibodies from halothane hepatitis patients react with the rat endoplasmic reticulum protein ERp72. Chem Res Toxicol. 1993 Sep-Oct;6(5):609–615. doi: 10.1021/tx00035a004. [DOI] [PubMed] [Google Scholar]
  27. Robin M. A., Maratrat M., Loeper J., Durand-Schneider A. M., Tinel M., Ballet F., Beaune P., Feldmann G., Pessayre D. Cytochrome P4502B follows a vesicular route to the plasma membrane in cultured rat hepatocytes. Gastroenterology. 1995 Apr;108(4):1110–1123. doi: 10.1016/0016-5085(95)90210-4. [DOI] [PubMed] [Google Scholar]
  28. Sakata N., Wu X., Dixon J. L., Ginsberg H. N. Proteolysis and lipid-facilitated translocation are distinct but competitive processes that regulate secretion of apolipoprotein B in Hep G2 cells. J Biol Chem. 1993 Nov 5;268(31):22967–22970. [PubMed] [Google Scholar]
  29. Satoh H., Fukuda Y., Anderson D. K., Ferrans V. J., Gillette J. R., Pohl L. R. Immunological studies on the mechanism of halothane-induced hepatotoxicity: immunohistochemical evidence of trifluoroacetylated hepatocytes. J Pharmacol Exp Ther. 1985 Jun;233(3):857–862. [PubMed] [Google Scholar]
  30. Sinclair J. F., Sinclair P. R., Healey J. F., Smith E. L., Bonkowsky H. L. Decrease in hepatic cytochrome P-450 by cobalt. Evidence for a role of cobalt protoporphyrin. Biochem J. 1982 Apr 15;204(1):103–109. doi: 10.1042/bj2040103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Szczesna-Skorupa E., Ahn K., Chen C. D., Doray B., Kemper B. The cytoplasmic and N-terminal transmembrane domains of cytochrome P450 contain independent signals for retention in the endoplasmic reticulum. J Biol Chem. 1995 Oct 13;270(41):24327–24333. doi: 10.1074/jbc.270.41.24327. [DOI] [PubMed] [Google Scholar]
  32. Tinel M., Robin M. A., Doostzadeh J., Maratrat M., Ballet F., Fardel N., el Kahwaji J., Beaune P., Daujat M., Labbe G. The interleukin-2 receptor down-regulates the expression of cytochrome P450 in cultured rat hepatocytes. Gastroenterology. 1995 Nov;109(5):1589–1599. doi: 10.1016/0016-5085(95)90648-7. [DOI] [PubMed] [Google Scholar]
  33. Volz B., Orberger G., Porwoll S., Hauri H. P., Tauber R. Selective reentry of recycling cell surface glycoproteins to the biosynthetic pathway in human hepatocarcinoma HepG2 cells. J Cell Biol. 1995 Aug;130(3):537–551. doi: 10.1083/jcb.130.3.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yamazaki S., Sato K., Suhara K., Sakaguchi M., Mihara K., Omura T. Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. J Biochem. 1993 Nov;114(5):652–657. doi: 10.1093/oxfordjournals.jbchem.a124232. [DOI] [PubMed] [Google Scholar]
  35. Zimmerman H. J., Lewis J. H., Ishak K. G., Maddrey W. C. Ticrynafen-associated hepatic injury: analysis of 340 cases. Hepatology. 1984 Mar-Apr;4(2):315–323. doi: 10.1002/hep.1840040223. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES