Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Sep 15;98(6):1481–1492. doi: 10.1172/JCI118937

Kidney, splanchnic, and leg protein turnover in humans. Insight from leucine and phenylalanine kinetics.

P Tessari 1, G Garibotto 1, S Inchiostro 1, C Robaudo 1, S Saffioti 1, M Vettore 1, M Zanetti 1, R Russo 1, G Deferrari 1
PMCID: PMC507576  PMID: 8823315

Abstract

The rate of kidney protein turnover in humans is not known. To this aim, we have measured kidney protein synthesis and degradation in postabsorptive humans using the arterio-venous catheterization technique combined with 14C-leucine, 15N-leucine, and 3H-phenylalanine tracer infusions. These measurements were compared with those obtained across the splanchnic bed, the legs (approximately muscle) and in the whole body. In the kidneys, protein balance was negative, as the rate of leucine release from protein degradation (16.8 +/- 5.1 mumol/min.1.73 m2) was greater (P < 0.02) than its uptake into protein synthesis (11.6 +/- 5.1 mumol/min. 1.73 m2). Splanchnic net protein balance was approximately 0 since leucine from protein degradation (32.1 +/- 9.9 mumol/min. 1.73 m2) and leucine into protein synthesis (30.8 +/- 11.5 mumol/min. 1.73 m2) were not different. In the legs, degradation exceeded synthesis (27.4 +/- 6.6 vs. 20.3 +/- 6.5 mumol/min. 1.73 m2, P < 0.02). The kidneys extracted alpha-ketoisocaproic acid, accounting for approximately 70% of net splanchnic alpha-ketoisocaproic acid release. The contributions by the kidneys to whole-body leucine rate of appearance, utilization for protein synthesis, and oxidation were approximately 11%, approximately 10%, and approximately 26%, respectively; those by the splanchnic area approximately 22%, approximately 27%, and approximately 18%; those from estimated total skeletal muscle approximately 37%, approximately 34%, and approximately 48%. Estimated fractional protein synthetic rates were approximately 42%/d in the kidneys, approximately 12% in the splanchnic area, and approximately 1.5% in muscle. This study reports the first estimates of kidney protein synthesis and degradation in humans, also in comparison with those measured in the splanchnic area, the legs, and the whole-body.

Full Text

The Full Text of this article is available as a PDF (241.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arfvidsson B., Zachrisson H., Möller-Loswick A. C., Hyltander A., Sandström R., Lundholm K. Effect of systemic hyperinsulinemia on amino acid flux across human legs in postabsorptive state. Am J Physiol. 1991 Jan;260(1 Pt 1):E46–E52. doi: 10.1152/ajpendo.1991.260.1.E46. [DOI] [PubMed] [Google Scholar]
  2. Barrett E. J., Gelfand R. A. The in vivo study of cardiac and skeletal muscle protein turnover. Diabetes Metab Rev. 1989 Mar;5(2):133–148. doi: 10.1002/dmr.5610050204. [DOI] [PubMed] [Google Scholar]
  3. Baumann P. Q., Stirewalt W. S., O'Rourke B. D., Howard D., Nair K. S. Precursor pools of protein synthesis: a stable isotope study in a swine model. Am J Physiol. 1994 Aug;267(2 Pt 1):E203–E209. doi: 10.1152/ajpendo.1994.267.2.E203. [DOI] [PubMed] [Google Scholar]
  4. Bier D. M. Intrinsically difficult problems: the kinetics of body proteins and amino acids in man. Diabetes Metab Rev. 1989 Mar;5(2):111–132. doi: 10.1002/dmr.5610050203. [DOI] [PubMed] [Google Scholar]
  5. Biolo G., Gastaldelli A., Zhang X. J., Wolfe R. R. Protein synthesis and breakdown in skin and muscle: a leg model of amino acid kinetics. Am J Physiol. 1994 Sep;267(3 Pt 1):E467–E474. doi: 10.1152/ajpendo.1994.267.3.E467. [DOI] [PubMed] [Google Scholar]
  6. Biolo G., Tessari P., Inchiostro S., Bruttomesso D., Fongher C., Sabadin L., Fratton M. G., Valerio A., Tiengo A. Leucine and phenylalanine kinetics during mixed meal ingestion: a multiple tracer approach. Am J Physiol. 1992 Apr;262(4 Pt 1):E455–E463. doi: 10.1152/ajpendo.1992.262.4.E455. [DOI] [PubMed] [Google Scholar]
  7. Björntorp P., Sjöström L. Carbohydrate storage in man: speculations and some quantitative considerations. Metabolism. 1978 Dec;27(12 Suppl 2):1853–1865. doi: 10.1016/s0026-0495(78)80004-3. [DOI] [PubMed] [Google Scholar]
  8. Castellino P., Solini A., Luzi L., Barr J. G., Smith D. J., Petrides A., Giordano M., Carroll C., DeFronzo R. A. Glucose and amino acid metabolism in chronic renal failure: effect of insulin and amino acids. Am J Physiol. 1992 Feb;262(2 Pt 2):F168–F176. doi: 10.1152/ajprenal.1992.262.2.F168. [DOI] [PubMed] [Google Scholar]
  9. Cheng K. N., Dworzak F., Ford G. C., Rennie M. J., Halliday D. Direct determination of leucine metabolism and protein breakdown in humans using L-[1-13C, 15N]-leucine and the forearm model. Eur J Clin Invest. 1985 Dec;15(6):349–354. doi: 10.1111/j.1365-2362.1985.tb00283.x. [DOI] [PubMed] [Google Scholar]
  10. Cheng K. N., Pacy P. J., Dworzak F., Ford G. C., Halliday D. Influence of fasting on leucine and muscle protein metabolism across the human forearm determined using L-[1-13C,15N]leucine as the tracer. Clin Sci (Lond) 1987 Sep;73(3):241–246. doi: 10.1042/cs0730241. [DOI] [PubMed] [Google Scholar]
  11. Cryer D. R., Matsushima T., Marsh J. B., Yudkoff M., Coates P. M., Cortner J. A. Direct measurement of apolipoprotein B synthesis in human very low density lipoprotein using stable isotopes and mass spectrometry. J Lipid Res. 1986 May;27(5):508–516. [PubMed] [Google Scholar]
  12. Denne S. C., Liechty E. A., Liu Y. M., Brechtel G., Baron A. D. Proteolysis in skeletal muscle and whole body in response to euglycemic hyperinsulinemia in normal adults. Am J Physiol. 1991 Dec;261(6 Pt 1):E809–E814. doi: 10.1152/ajpendo.1991.261.6.E809. [DOI] [PubMed] [Google Scholar]
  13. Eriksson L. S., Hagenfeldt L., Felig P., Wahren J. Leucine uptake by splanchnic and leg tissues in man: relative independence of insulin levels. Clin Sci (Lond) 1983 Nov;65(5):491–498. doi: 10.1042/cs0650491. [DOI] [PubMed] [Google Scholar]
  14. Fong Y., Matthews D. E., He W., Marano M. A., Moldawer L. L., Lowry S. F. Whole body and splanchnic leucine, phenylalanine, and glucose kinetics during endotoxemia in humans. Am J Physiol. 1994 Feb;266(2 Pt 2):R419–R425. doi: 10.1152/ajpregu.1994.266.2.R419. [DOI] [PubMed] [Google Scholar]
  15. Garibotto G., Deferrari G., Robaudo C., Saffioti S., Sofia A., Russo R., Tizianello A. Disposal of exogenous amino acids by muscle in patients with chronic renal failure. Am J Clin Nutr. 1995 Jul;62(1):136–142. doi: 10.1093/ajcn/62.1.136. [DOI] [PubMed] [Google Scholar]
  16. Gelfand R. A., Barrett E. J. Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest. 1987 Jul;80(1):1–6. doi: 10.1172/JCI113033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gelfand R. A., Glickman M. G., Castellino P., Louard R. J., DeFronzo R. A. Measurement of L-[1-14C]leucine kinetics in splanchnic and leg tissues in humans. Effect of amino acid infusion. Diabetes. 1988 Oct;37(10):1365–1372. doi: 10.2337/diab.37.10.1365. [DOI] [PubMed] [Google Scholar]
  18. Goldspink D. F., Kelly F. J. Protein turnover and growth in the whole body, liver and kidney of the rat from the foetus to senility. Biochem J. 1984 Jan 15;217(2):507–516. doi: 10.1042/bj2170507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Halliday D., McKeran R. O. Measurement of muscle protein synthetic rate from serial muscle biopsies and total body protein turnover in man by continuous intravenous infusion of L-(alpha-15N)lysine. Clin Sci Mol Med. 1975 Dec;49(6):581–590. doi: 10.1042/cs0490581. [DOI] [PubMed] [Google Scholar]
  20. Herbert V., Lau K. S., Gottlieb C. W., Bleicher S. J. Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab. 1965 Oct;25(10):1375–1384. doi: 10.1210/jcem-25-10-1375. [DOI] [PubMed] [Google Scholar]
  21. Heslin M. J., Newman E., Wolf R. F., Pisters P. W., Brennan M. F. Effect of hyperinsulinemia on whole body and skeletal muscle leucine carbon kinetics in humans. Am J Physiol. 1992 Jun;262(6 Pt 1):E911–E918. doi: 10.1152/ajpendo.1992.262.6.E911. [DOI] [PubMed] [Google Scholar]
  22. Heys S. D., Park K. G., McNurlan M. A., Keenan R. A., Miller J. D., Eremin O., Garlick P. J. Protein synthesis rates in colon and liver: stimulation by gastrointestinal pathologies. Gut. 1992 Jul;33(7):976–981. doi: 10.1136/gut.33.7.976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Horber F. F., Horber-Feyder C. M., Krayer S., Schwenk W. F., Haymond M. W. Plasma reciprocal pool specific activity predicts that of intracellular free leucine for protein synthesis. Am J Physiol. 1989 Sep;257(3 Pt 1):E385–E399. doi: 10.1152/ajpendo.1989.257.3.E385. [DOI] [PubMed] [Google Scholar]
  24. Horber F. F., Kahl J., Lecavalier L., Krom B., Haymond M. W. Determination of leucine and alpha-ketoisocaproic acid concentrations and specific activity in plasma and leucine specific activities in proteins using high-performance liquid chromatography. J Chromatogr. 1989 Oct 27;495:81–94. doi: 10.1016/s0378-4347(00)82611-0. [DOI] [PubMed] [Google Scholar]
  25. Ichihara A., Koyama E. Transaminase of branched chain amino acids. I. Branched chain amino acids-alpha-ketoglutarate transaminase. J Biochem. 1966 Feb;59(2):160–169. doi: 10.1093/oxfordjournals.jbchem.a128277. [DOI] [PubMed] [Google Scholar]
  26. James W. P., Garlick P. J., Sender P. M., Waterlow J. C. Studies of amino acid and protein metabolism in normal man with L-[U-14C]tyrosine. Clin Sci Mol Med. 1976 Jun;50(6):525–532. doi: 10.1042/cs0500525. [DOI] [PubMed] [Google Scholar]
  27. Krebs H. A., Lund P. Aspects of the regulation of the metabolism of branched-chain amino acids. Adv Enzyme Regul. 1976;15:375–394. doi: 10.1016/0065-2571(77)90026-7. [DOI] [PubMed] [Google Scholar]
  28. Layman D. K., Wolfe R. R. Sample site selection for tracer studies applying a unidirectional circulatory approach. Am J Physiol. 1987 Aug;253(2 Pt 1):E173–E178. doi: 10.1152/ajpendo.1987.253.2.E173. [DOI] [PubMed] [Google Scholar]
  29. Maack T. Renal handling of low molecular weight proteins. Am J Med. 1975 Jan;58(1):57–64. doi: 10.1016/0002-9343(75)90533-1. [DOI] [PubMed] [Google Scholar]
  30. Martin A. F., Rabinowitz M., Blough R., Prior G., Zak R. Measurements of half-life of rat cardiac myosin heavy chain with leucyl-tRNA used as precursor pool. J Biol Chem. 1977 May 25;252(10):3422–3429. [PubMed] [Google Scholar]
  31. Matthews D. E., Bier D. M., Rennie M. J., Edwards R. H., Halliday D., Millward D. J., Clugston G. A. Regulation of leucine metabolism in man: a stable isotope study. Science. 1981 Dec 4;214(4525):1129–1131. doi: 10.1126/science.7302583. [DOI] [PubMed] [Google Scholar]
  32. Matthews D. E., Marano M. A., Campbell R. G. Splanchnic bed utilization of leucine and phenylalanine in humans. Am J Physiol. 1993 Jan;264(1 Pt 1):E109–E118. doi: 10.1152/ajpendo.1993.264.1.E109. [DOI] [PubMed] [Google Scholar]
  33. May R., Logue B., Edwards B., Patel S. An in vitro method for the determination of protein turnover in incubated proximal tubule segments. Kidney Int. 1993 May;43(5):1156–1159. doi: 10.1038/ki.1993.162. [DOI] [PubMed] [Google Scholar]
  34. Mogensen C. E., Andersen M. J. Increased kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes. 1973 Sep;22(9):706–712. doi: 10.2337/diab.22.9.706. [DOI] [PubMed] [Google Scholar]
  35. Nair K. S., Ford G. C., Ekberg K., Fernqvist-Forbes E., Wahren J. Protein dynamics in whole body and in splanchnic and leg tissues in type I diabetic patients. J Clin Invest. 1995 Jun;95(6):2926–2937. doi: 10.1172/JCI118000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ogden D. A. Consequences of renal donation in man. Am J Kidney Dis. 1983 Mar;2(5):501–511. doi: 10.1016/s0272-6386(83)80091-2. [DOI] [PubMed] [Google Scholar]
  37. Parhofer K. G., Hugh P., Barrett R., Bier D. M., Schonfeld G. Determination of kinetic parameters of apolipoprotein B metabolism using amino acids labeled with stable isotopes. J Lipid Res. 1991 Aug;32(8):1311–1323. [PubMed] [Google Scholar]
  38. Schwenk W. F., Beaufrere B., Haymond M. W. Use of reciprocal pool specific activities to model leucine metabolism in humans. Am J Physiol. 1985 Dec;249(6 Pt 1):E646–E650. doi: 10.1152/ajpendo.1985.249.6.E646. [DOI] [PubMed] [Google Scholar]
  39. Schwenk W. F., Berg P. J., Beaufrere B., Miles J. M., Haymond M. W. Use of t-butyldimethylsilylation in the gas chromatographic/mass spectrometric analysis of physiologic compounds found in plasma using electron-impact ionization. Anal Biochem. 1984 Aug 15;141(1):101–109. doi: 10.1016/0003-2697(84)90431-7. [DOI] [PubMed] [Google Scholar]
  40. Shinnick F. L., Harper A. E. Branched-chain amino acid oxidation by isolated rat tissue preparations. Biochim Biophys Acta. 1976 Jul 21;437(2):477–486. doi: 10.1016/0304-4165(76)90016-7. [DOI] [PubMed] [Google Scholar]
  41. Tessari P. Effects of insulin on whole-body and regional amino acid metabolism. Diabetes Metab Rev. 1994 Oct;10(3):253–285. doi: 10.1002/dmr.5610100304. [DOI] [PubMed] [Google Scholar]
  42. Tessari P., Inchiostro S., Biolo G., Vincenti E., Sabadin L. Effects of acute systemic hyperinsulinemia on forearm muscle proteolysis in healthy man. J Clin Invest. 1991 Jul;88(1):27–33. doi: 10.1172/JCI115287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tessari P., Inchiostro S., Vettore M., Sabadin L., Biolo G. A fast high-performance liquid chromatographic method for the measurement of plasma concentration and specific activity of phenylalanine. Clin Biochem. 1991 Oct;24(5):425–428. doi: 10.1016/s0009-9120(05)80018-9. [DOI] [PubMed] [Google Scholar]
  44. Tessari P., Inchiostro S., Zanetti M., Barazzoni R. A model of skeletal muscle leucine kinetics measured across the human forearm. Am J Physiol. 1995 Jul;269(1 Pt 1):E127–E136. doi: 10.1152/ajpendo.1995.269.1.E127. [DOI] [PubMed] [Google Scholar]
  45. Tizianello A., De Ferrari G., Garibotto G., Gurreri G., Robaudo C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest. 1980 May;65(5):1162–1173. doi: 10.1172/JCI109771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tourian A., Goddard J., Puck T. T. Phenylalanine hydroxylase activity in mammalian cells. J Cell Physiol. 1969 Apr;73(2):159–170. doi: 10.1002/jcp.1040730210. [DOI] [PubMed] [Google Scholar]
  47. Trinh-Trang-Tan M. M., Levillain O., Bankir L. Contribution of leucine to oxidative metabolism of the rat medullary thick ascending limb. Pflugers Arch. 1988 Jun;411(6):676–680. doi: 10.1007/BF00580865. [DOI] [PubMed] [Google Scholar]
  48. Wahren J., Felig P., Hagenfeldt L. Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J Clin Invest. 1976 Apr;57(4):987–999. doi: 10.1172/JCI108375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wahren J., Felig P. Renal substrate exchange in human diabetes mellitus. Diabetes. 1975 Aug;24(8):730–734. doi: 10.2337/diab.24.8.730. [DOI] [PubMed] [Google Scholar]
  50. Watt P. W., Corbett M. E., Rennie M. J. Stimulation of protein synthesis in pig skeletal muscle by infusion of amino acids during constant insulin availability. Am J Physiol. 1992 Sep;263(3 Pt 1):E453–E460. doi: 10.1152/ajpendo.1992.263.3.E453. [DOI] [PubMed] [Google Scholar]
  51. Watt P. W., Lindsay Y., Scrimgeour C. M., Chien P. A., Gibson J. N., Taylor D. J., Rennie M. J. Isolation of aminoacyl-tRNA and its labeling with stable-isotope tracers: Use in studies of human tissue protein synthesis. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5892–5896. doi: 10.1073/pnas.88.13.5892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wolff J. E., Bergman E. N., Williams H. H. Net metabolism of plasma amino acids by liver and portal-drained viscera of fed sheep. Am J Physiol. 1972 Aug;223(2):438–446. doi: 10.1152/ajplegacy.1972.223.2.438. [DOI] [PubMed] [Google Scholar]
  53. Yu Y. M., Wagner D. A., Tredget E. E., Walaszewski J. A., Burke J. F., Young V. R. Quantitative role of splanchnic region in leucine metabolism: L-[1-13C,15N]leucine and substrate balance studies. Am J Physiol. 1990 Jul;259(1 Pt 1):E36–E51. doi: 10.1152/ajpendo.1990.259.1.E36. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES