Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Oct 1;98(7):1550–1559. doi: 10.1172/JCI118948

Induction of diaphragmatic nitric oxide synthase after endotoxin administration in rats: role on diaphragmatic contractile dysfunction.

J Boczkowski 1, S Lanone 1, D Ungureanu-Longrois 1, G Danialou 1, T Fournier 1, M Aubier 1
PMCID: PMC507587  PMID: 8833903

Abstract

Nitric oxide (NO), a free radical that is negatively inotropic in the heart and skeletal muscle, is produced in large amounts during sepsis by an NO synthase inducible (iNOS) by LPS and/or cytokines. The aim of this study was to examine iNOS induction in the rat diaphragm after Escherichia Coli LPS inoculation (1.6 mg/kg i.p.), and its involvement in diaphragmatic contractile dysfunction. Inducible NOS protein and activity could be detected in the diaphragm as early as 6 h after LPS inoculation. 6 and 12 h after LPS, iNOS was expressed in inflammatory cells infiltrating the perivascular spaces of the diaphragm, whereas 12 and 24 h after LPS it was expressed in skeletal muscle fibers. Inducible NOS was also expressed in the left ventricular myocardium, whereas no expression was observed in the abdominal, intercostal, and peripheral skeletal muscles. Diaphragmatic force was significantly decreased 12 and 24 h after LPS. This decrease was prevented by inhibition of iNOS induction by dexamethasone or by inhibition of iNOS activity by N(G)-methyl-L-arginine. We conclude that iNOS was induced in the diaphragm after E. Coli LPS inoculation in rats, being involved in the decreased muscular force.

Full Text

The Full Text of this article is available as a PDF (548.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano Y., Lee S. W., Allison A. C. Inhibition by glucocorticoids of the formation of interleukin-1 alpha, interleukin-1 beta, and interleukin-6: mediation by decreased mRNA stability. Mol Pharmacol. 1993 Feb;43(2):176–182. [PubMed] [Google Scholar]
  2. Balligand J. L., Ungureanu-Longrois D., Simmons W. W., Pimental D., Malinski T. A., Kapturczak M., Taha Z., Lowenstein C. J., Davidoff A. J., Kelly R. A. Cytokine-inducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. J Biol Chem. 1994 Nov 4;269(44):27580–27588. [PubMed] [Google Scholar]
  3. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boczkowski J., Dureuil B., Pariente R., Aubier M. Preventive effects of indomethacin on diaphragmatic contractile alterations in endotoxemic rats. Am Rev Respir Dis. 1990 Jul;142(1):193–198. doi: 10.1164/ajrccm/142.1.193. [DOI] [PubMed] [Google Scholar]
  5. Bolaños J. P., Peuchen S., Heales S. J., Land J. M., Clark J. B. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J Neurochem. 1994 Sep;63(3):910–916. doi: 10.1046/j.1471-4159.1994.63030910.x. [DOI] [PubMed] [Google Scholar]
  6. Bone R. C., Balk R. A., Cerra F. B., Dellinger R. P., Fein A. M., Knaus W. A., Schein R. M., Sibbald W. J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992 Jun;101(6):1644–1655. doi: 10.1378/chest.101.6.1644. [DOI] [PubMed] [Google Scholar]
  7. Bredt D. S., Snyder S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990 Jan;87(2):682–685. doi: 10.1073/pnas.87.2.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bredt D. S., Snyder S. H. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–195. doi: 10.1146/annurev.bi.63.070194.001135. [DOI] [PubMed] [Google Scholar]
  9. Burke R. E., Levine D. N., Zajac F. E., 3rd Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius. Science. 1971 Nov 12;174(4010):709–712. doi: 10.1126/science.174.4010.709. [DOI] [PubMed] [Google Scholar]
  10. Buttery L. D., Evans T. J., Springall D. R., Carpenter A., Cohen J., Polak J. M. Immunochemical localization of inducible nitric oxide synthase in endotoxin-treated rats. Lab Invest. 1994 Nov;71(5):755–764. [PubMed] [Google Scholar]
  11. Cleeter M. W., Cooper J. M., Darley-Usmar V. M., Moncada S., Schapira A. H. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 1994 May 23;345(1):50–54. doi: 10.1016/0014-5793(94)00424-2. [DOI] [PubMed] [Google Scholar]
  12. Close R. I. Dynamic properties of mammalian skeletal muscles. Physiol Rev. 1972 Jan;52(1):129–197. doi: 10.1152/physrev.1972.52.1.129. [DOI] [PubMed] [Google Scholar]
  13. Cohen C. A., Zagelbaum G., Gross D., Roussos C., Macklem P. T. Clinical manifestations of inspiratory muscle fatigue. Am J Med. 1982 Sep;73(3):308–316. [PubMed] [Google Scholar]
  14. Crestani B., Cornillet P., Dehoux M., Rolland C., Guenounou M., Aubier M. Alveolar type II epithelial cells produce interleukin-6 in vitro and in vivo. Regulation by alveolar macrophage secretory products. J Clin Invest. 1994 Aug;94(2):731–740. doi: 10.1172/JCI117392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cunha F. Q., Assreuy J., Moss D. W., Rees D., Leal L. M., Moncada S., Carrier M., O'Donnell C. A., Liew F. Y. Differential induction of nitric oxide synthase in various organs of the mouse during endotoxaemia: role of TNF-alpha and IL-1-beta. Immunology. 1994 Feb;81(2):211–215. [PMC free article] [PubMed] [Google Scholar]
  16. Davis J. N., Loh L. Alveolar hypoventilation and respiratory muscle weakness. Bull Eur Physiopathol Respir. 1979;15 (Suppl):45–53. [PubMed] [Google Scholar]
  17. DeWitt D. L. Prostaglandin endoperoxide synthase: regulation of enzyme expression. Biochim Biophys Acta. 1991 May 8;1083(2):121–134. doi: 10.1016/0005-2760(91)90032-d. [DOI] [PubMed] [Google Scholar]
  18. Gaston B., Drazen J. M., Loscalzo J., Stamler J. S. The biology of nitrogen oxides in the airways. Am J Respir Crit Care Med. 1994 Feb;149(2 Pt 1):538–551. doi: 10.1164/ajrccm.149.2.7508323. [DOI] [PubMed] [Google Scholar]
  19. Geller D. A., Nussler A. K., Di Silvio M., Lowenstein C. J., Shapiro R. A., Wang S. C., Simmons R. L., Billiar T. R. Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):522–526. doi: 10.1073/pnas.90.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Haglund U., Gerdin B. Oxygen-free radicals (OFR) and circulatory shock. Circ Shock. 1991 Aug;34(4):405–411. [PubMed] [Google Scholar]
  21. Huang K. S., Wallner B. P., Mattaliano R. J., Tizard R., Burne C., Frey A., Hession C., McGray P., Sinclair L. K., Chow E. P. Two human 35 kd inhibitors of phospholipase A2 are related to substrates of pp60v-src and of the epidermal growth factor receptor/kinase. Cell. 1986 Jul 18;46(2):191–199. doi: 10.1016/0092-8674(86)90736-1. [DOI] [PubMed] [Google Scholar]
  22. Hussain S. N., Graham R., Rutledge F., Roussos C. Respiratory muscle energetics during endotoxic shock in dogs. J Appl Physiol (1985) 1986 Feb;60(2):486–493. doi: 10.1152/jappl.1986.60.2.486. [DOI] [PubMed] [Google Scholar]
  23. Hussain S. N., Simkus G., Roussos C. Respiratory muscle fatigue: a cause of ventilatory failure in septic shock. J Appl Physiol (1985) 1985 Jun;58(6):2033–2040. doi: 10.1152/jappl.1985.58.6.2033. [DOI] [PubMed] [Google Scholar]
  24. Ignarro L. J., Wood K. S. Activation of purified soluble guanylate cyclase by arachidonic acid requires absence of enzyme-bound heme. Biochim Biophys Acta. 1987 Apr 22;928(2):160–170. doi: 10.1016/0167-4889(87)90117-0. [DOI] [PubMed] [Google Scholar]
  25. Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. doi: 10.1042/bj2980249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kobzik L., Reid M. B., Bredt D. S., Stamler J. S. Nitric oxide in skeletal muscle. Nature. 1994 Dec 8;372(6506):546–548. doi: 10.1038/372546a0. [DOI] [PubMed] [Google Scholar]
  27. Lancaster J. R., Jr Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8137–8141. doi: 10.1073/pnas.91.17.8137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Leon A., Boczkowski J., Dureuil B., Desmonts J. M., Aubier M. Effects of endotoxic shock on diaphragmatic function in mechanically ventilated rats. J Appl Physiol (1985) 1992 Apr;72(4):1466–1472. doi: 10.1152/jappl.1992.72.4.1466. [DOI] [PubMed] [Google Scholar]
  29. MacMicking J. D., Nathan C., Hom G., Chartrain N., Fletcher D. S., Trumbauer M., Stevens K., Xie Q. W., Sokol K., Hutchinson N. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell. 1995 May 19;81(4):641–650. doi: 10.1016/0092-8674(95)90085-3. [DOI] [PubMed] [Google Scholar]
  30. Metzger J. M., Scheidt K. B., Fitts R. H. Histochemical and physiological characteristics of the rat diaphragm. J Appl Physiol (1985) 1985 Apr;58(4):1085–1091. doi: 10.1152/jappl.1985.58.4.1085. [DOI] [PubMed] [Google Scholar]
  31. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  32. Montgomery A. B., Stager M. A., Carrico C. J., Hudson L. D. Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Respir Dis. 1985 Sep;132(3):485–489. doi: 10.1164/arrd.1985.132.3.485. [DOI] [PubMed] [Google Scholar]
  33. Murciano D., Rigaud D., Pingleton S., Armengaud M. H., Melchior J. C., Aubier M. Diaphragmatic function in severely malnourished patients with anorexia nervosa. Effects of renutrition. Am J Respir Crit Care Med. 1994 Dec;150(6 Pt 1):1569–1574. doi: 10.1164/ajrccm.150.6.7952616. [DOI] [PubMed] [Google Scholar]
  34. Olken N. M., Marletta M. A. NG-allyl- and NG-cyclopropyl-L-arginine: two novel inhibitors of macrophage nitric oxide synthase. J Med Chem. 1992 Mar 20;35(6):1137–1144. doi: 10.1021/jm00084a020. [DOI] [PubMed] [Google Scholar]
  35. Piotrovskij V., Kállay Z., Horecký J., Trnovec T., Krumpl G., Krejcy K. Dose-ranging study of NG-nitro-L-arginine pharmacokinetics in rats after bolus intravenous administration. Xenobiotica. 1994 Jul;24(7):663–669. doi: 10.3109/00498259409043268. [DOI] [PubMed] [Google Scholar]
  36. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys. 1991 Aug 1;288(2):481–487. doi: 10.1016/0003-9861(91)90224-7. [DOI] [PubMed] [Google Scholar]
  37. Rees D. D., Cellek S., Palmer R. M., Moncada S. Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock. Biochem Biophys Res Commun. 1990 Dec 14;173(2):541–547. doi: 10.1016/s0006-291x(05)80068-3. [DOI] [PubMed] [Google Scholar]
  38. Reif D. W., McCreedy S. A. N-nitro-L-arginine and N-monomethyl-L-arginine exhibit a different pattern of inactivation toward the three nitric oxide synthases. Arch Biochem Biophys. 1995 Jun 20;320(1):170–176. doi: 10.1006/abbi.1995.1356. [DOI] [PubMed] [Google Scholar]
  39. Rochester D. F. Respiratory muscle weakness, pattern of breathing, and CO2 retention in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1991 May;143(5 Pt 1):901–903. doi: 10.1164/ajrccm/143.5_Pt_1.901. [DOI] [PubMed] [Google Scholar]
  40. Rochester D. F. The diaphragm: contractile properties and fatigue. J Clin Invest. 1985 May;75(5):1397–1402. doi: 10.1172/JCI111841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Salter M., Knowles R. G., Moncada S. Widespread tissue distribution, species distribution and changes in activity of Ca(2+)-dependent and Ca(2+)-independent nitric oxide synthases. FEBS Lett. 1991 Oct 7;291(1):145–149. doi: 10.1016/0014-5793(91)81123-p. [DOI] [PubMed] [Google Scholar]
  42. Shindo T., Ikeda U., Ohkawa F., Kawahara Y., Yokoyama M., Shimada K. Nitric oxide synthesis in cardiac myocytes and fibroblasts by inflammatory cytokines. Cardiovasc Res. 1995 Jun;29(6):813–819. [PubMed] [Google Scholar]
  43. Shindoh C., Dimarco A., Nethery D., Supinski G. Effect of PEG-superoxide dismutase on the diaphragmatic response to endotoxin. Am Rev Respir Dis. 1992 Jun;145(6):1350–1354. doi: 10.1164/ajrccm/145.6.1350. [DOI] [PubMed] [Google Scholar]
  44. Stamler J. S., Singel D. J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992 Dec 18;258(5090):1898–1902. doi: 10.1126/science.1281928. [DOI] [PubMed] [Google Scholar]
  45. Tabrizi-Fard M. A., Fung H. L. Pharmacokinetics, plasma protein binding and urinary excretion of N omega-nitro-L-arginine in rats. Br J Pharmacol. 1994 Feb;111(2):394–396. doi: 10.1111/j.1476-5381.1994.tb14747.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tracey W. R., Tse J., Carter G. Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J Pharmacol Exp Ther. 1995 Mar;272(3):1011–1015. [PubMed] [Google Scholar]
  47. Tsujino M., Hirata Y., Imai T., Kanno K., Eguchi S., Ito H., Marumo F. Induction of nitric oxide synthase gene by interleukin-1 beta in cultured rat cardiocytes. Circulation. 1994 Jul;90(1):375–383. doi: 10.1161/01.cir.90.1.375. [DOI] [PubMed] [Google Scholar]
  48. Ungureanu-Longrois D., Balligand J. L., Okada I., Simmons W. W., Kobzik L., Lowenstein C. J., Kunkel S. L., Michel T., Kelly R. A., Smith T. W. Contractile responsiveness of ventricular myocytes to isoproterenol is regulated by induction of nitric oxide synthase activity in cardiac microvascular endothelial cells in heterotypic primary culture. Circ Res. 1995 Sep;77(3):486–493. doi: 10.1161/01.res.77.3.486. [DOI] [PubMed] [Google Scholar]
  49. Van Surell C., Boczkowski J., Pasquier C., Du Y., Franzini E., Aubier M. Effects of N-acetylcysteine on diaphragmatic function and malondialdehyde content in Escherichia coli endotoxemic rats. Am Rev Respir Dis. 1992 Sep;146(3):730–734. doi: 10.1164/ajrccm/146.3.730. [DOI] [PubMed] [Google Scholar]
  50. Vanderkooi J. M., Wright W. W., Erecinska M. Nitric oxide diffusion coefficients in solutions, proteins and membranes determined by phosphorescence. Biochim Biophys Acta. 1994 Aug 17;1207(2):249–254. doi: 10.1016/0167-4838(94)00073-5. [DOI] [PubMed] [Google Scholar]
  51. Wei X. Q., Charles I. G., Smith A., Ure J., Feng G. J., Huang F. P., Xu D., Muller W., Moncada S., Liew F. Y. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature. 1995 Jun 1;375(6530):408–411. doi: 10.1038/375408a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES