Abstract
This study demonstrates that rat islet beta cells constitutively express an apoptotic program which is activated when mRNA or protein synthesis is blocked. Apoptotic beta cells were detectable by electron microscopy after treatment with actinomycin D or cycloheximide. With a fluorescence microscopic assay both agents were found to increase the number of apoptotic beta cells dose- and time-dependently, up to 70% after 1 wk of culture; virtually no apoptotic beta cells occurred in control preparations or in conditions leading to primary necrosis. Thus, survival of beta cells seems dependent on synthesis of proteins which suppress an endogenous suicide program. This mechanism explains earlier observed effects of glucose on survival of cultured beta cells. Glucose is known to dose-dependently increase the percentage of beta cells in active biosynthesis and the percentage that survives during culture. It is now demonstrated that the glucose-induced survival of beta cells cultured for 1 wk results from a dose-dependent reduction in the percentage of beta cells dying in apoptosis (49% at 3 mM glucose, 40% at 6 mM, 9% at 10 mM). Thus, intercellular differences in glucose sensitivity appear responsible for the heterogeneity in beta cell sensitivity to apoptotic conditions. These data indicate that glucose promotes survival of beta cells by activating synthesis of proteins which suppress apoptosis. The present model allows for further investigation of the regulation of apoptosis in beta cells and the identification of agents which induce or prevent beta cell death.
Full Text
The Full Text of this article is available as a PDF (427.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blume N., Skouv J., Larsson L. I., Holst J. J., Madsen O. D. Potent inhibitory effects of transplantable rat glucagonomas and insulinomas on the respective endogenous islet cells are associated with pancreatic apoptosis. J Clin Invest. 1995 Nov;96(5):2227–2235. doi: 10.1172/JCI118278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dive C., Gregory C. D., Phipps D. J., Evans D. L., Milner A. E., Wyllie A. H. Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry. Biochim Biophys Acta. 1992 Feb 3;1133(3):275–285. doi: 10.1016/0167-4889(92)90048-g. [DOI] [PubMed] [Google Scholar]
- Dremier S., Golstein J., Mosselmans R., Dumont J. E., Galand P., Robaye B. Apoptosis in dog thyroid cells. Biochem Biophys Res Commun. 1994 Apr 15;200(1):52–58. doi: 10.1006/bbrc.1994.1412. [DOI] [PubMed] [Google Scholar]
- Finegood D. T., Scaglia L., Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes. 1995 Mar;44(3):249–256. doi: 10.2337/diab.44.3.249. [DOI] [PubMed] [Google Scholar]
- Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes. 1965 Oct;14(10):619–633. doi: 10.2337/diab.14.10.619. [DOI] [PubMed] [Google Scholar]
- Gold R., Schmied M., Giegerich G., Breitschopf H., Hartung H. P., Toyka K. V., Lassmann H. Differentiation between cellular apoptosis and necrosis by the combined use of in situ tailing and nick translation techniques. Lab Invest. 1994 Aug;71(2):219–225. [PubMed] [Google Scholar]
- Hardin J. A., Sherr D. H., DeMaria M., Lopez P. A. A simple fluorescence method for surface antigen phenotyping of lymphocytes undergoing DNA fragmentation. J Immunol Methods. 1992 Sep 18;154(1):99–107. doi: 10.1016/0022-1759(92)90217-h. [DOI] [PubMed] [Google Scholar]
- Ijiri K., Potten C. S. Further studies on the response of intestinal crypt cells of different hierarchical status to eighteen different cytotoxic agents. Br J Cancer. 1987 Feb;55(2):113–123. doi: 10.1038/bjc.1987.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- In't Veld P. A., Pipeleers D. G. In situ analysis of pancreatic islets in rats developing diabetes. Appearance of nonendocrine cells with surface MHC class II antigens and cytoplasmic insulin immunoreactivity. J Clin Invest. 1988 Sep;82(3):1123–1128. doi: 10.1172/JCI113669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishizaki Y., Burne J. F., Raff M. C. Autocrine signals enable chondrocytes to survive in culture. J Cell Biol. 1994 Aug;126(4):1069–1077. doi: 10.1083/jcb.126.4.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiekens R., In 't Veld P., Mahler T., Schuit F., Van De Winkel M., Pipeleers D. Differences in glucose recognition by individual rat pancreatic B cells are associated with intercellular differences in glucose-induced biosynthetic activity. J Clin Invest. 1992 Jan;89(1):117–125. doi: 10.1172/JCI115551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ledda-Columbano G. M., Coni P., Faa G., Manenti G., Columbano A. Rapid induction of apoptosis in rat liver by cycloheximide. Am J Pathol. 1992 Mar;140(3):545–549. [PMC free article] [PubMed] [Google Scholar]
- Ling Z., Hannaert J. C., Pipeleers D. Effect of nutrients, hormones and serum on survival of rat islet beta cells in culture. Diabetologia. 1994 Jan;37(1):15–21. doi: 10.1007/BF00428772. [DOI] [PubMed] [Google Scholar]
- Ling Z., Pipeleers D. G. Preservation of glucose-responsive islet beta-cells during serum-free culture. Endocrinology. 1994 Jun;134(6):2614–2621. doi: 10.1210/endo.134.6.7515006. [DOI] [PubMed] [Google Scholar]
- Lorenzo A., Razzaboni B., Weir G. C., Yankner B. A. Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature. 1994 Apr 21;368(6473):756–760. doi: 10.1038/368756a0. [DOI] [PubMed] [Google Scholar]
- Martin D. P., Schmidt R. E., DiStefano P. S., Lowry O. H., Carter J. G., Johnson E. M., Jr Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol. 1988 Mar;106(3):829–844. doi: 10.1083/jcb.106.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin S. J. Apoptosis: suicide, execution or murder? Trends Cell Biol. 1993 May;3(5):141–144. doi: 10.1016/0962-8924(93)90128-n. [DOI] [PubMed] [Google Scholar]
- Martin S. J., Lennon S. V., Bonham A. M., Cotter T. G. Induction of apoptosis (programmed cell death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis. J Immunol. 1990 Sep 15;145(6):1859–1867. [PubMed] [Google Scholar]
- Nagata S., Golstein P. The Fas death factor. Science. 1995 Mar 10;267(5203):1449–1456. doi: 10.1126/science.7533326. [DOI] [PubMed] [Google Scholar]
- Pipeleers D. G. Heterogeneity in pancreatic beta-cell population. Diabetes. 1992 Jul;41(7):777–781. doi: 10.2337/diab.41.7.777. [DOI] [PubMed] [Google Scholar]
- Pipeleers D. G., Schuit F. C., in't Veld P. A., Maes E., Hooghe-Peters E. L., Van de Winkel M., Gepts W. Interplay of nutrients and hormones in the regulation of insulin release. Endocrinology. 1985 Sep;117(3):824–833. doi: 10.1210/endo-117-3-824. [DOI] [PubMed] [Google Scholar]
- Pipeleers D. G., in't Veld P. A., Van de Winkel M., Maes E., Schuit F. C., Gepts W. A new in vitro model for the study of pancreatic A and B cells. Endocrinology. 1985 Sep;117(3):806–816. doi: 10.1210/endo-117-3-806. [DOI] [PubMed] [Google Scholar]
- Pipeleers D., Ling Z. Pancreatic beta cells in insulin-dependent diabetes. Diabetes Metab Rev. 1992 Oct;8(3):209–227. doi: 10.1002/dmr.5610080303. [DOI] [PubMed] [Google Scholar]
- Raff M. C., Barres B. A., Burne J. F., Coles H. S., Ishizaki Y., Jacobson M. D. Programmed cell death and the control of cell survival: lessons from the nervous system. Science. 1993 Oct 29;262(5134):695–700. doi: 10.1126/science.8235590. [DOI] [PubMed] [Google Scholar]
- Scaglia L., Smith F. E., Bonner-Weir S. Apoptosis contributes to the involution of beta cell mass in the post partum rat pancreas. Endocrinology. 1995 Dec;136(12):5461–5468. doi: 10.1210/endo.136.12.7588296. [DOI] [PubMed] [Google Scholar]
- Schuit F. C., In't Veld P. A., Pipeleers D. G. Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3865–3869. doi: 10.1073/pnas.85.11.3865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steller H. Mechanisms and genes of cellular suicide. Science. 1995 Mar 10;267(5203):1445–1449. doi: 10.1126/science.7878463. [DOI] [PubMed] [Google Scholar]
- Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science. 1995 Mar 10;267(5203):1456–1462. doi: 10.1126/science.7878464. [DOI] [PubMed] [Google Scholar]
- Tishler R. B., Calderwood S. K., Coleman C. N., Price B. D. Increases in sequence specific DNA binding by p53 following treatment with chemotherapeutic and DNA damaging agents. Cancer Res. 1993 May 15;53(10 Suppl):2212–2216. [PubMed] [Google Scholar]
- Vitale M., Zamai L., Mazzotti G., Cataldi A., Falcieri E. Differential kinetics of propidium iodide uptake in apoptotic and necrotic thymocytes. Histochemistry. 1993 Sep;100(3):223–229. doi: 10.1007/BF00269095. [DOI] [PubMed] [Google Scholar]
- Wyllie A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980 Apr 10;284(5756):555–556. doi: 10.1038/284555a0. [DOI] [PubMed] [Google Scholar]
- Wyllie A. H., Kerr J. F., Currie A. R. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]