Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Oct 1;98(7):1602–1612. doi: 10.1172/JCI118954

Treatment of experimental encephalomyelitis with a novel chimeric fusion protein of myelin basic protein and proteolipid protein.

E A Elliott 1, H I McFarland 1, S H Nye 1, R Cofiell 1, T M Wilson 1, J A Wilkins 1, S P Squinto 1, L A Matis 1, J P Mueller 1
PMCID: PMC507593  PMID: 8833909

Abstract

It has been shown that peripheral T cell tolerance can be induced by systemic antigen administration. We have been interested in using this phenomenon to develop antigen-specific immunotherapies for T cell-mediated autoimmune diseases. In patients with the demyelinating disease multiple sclerosis (MS), multiple potentially autoantigenic epitopes have been identified on the two major proteins of the myelin sheath, myelin basic protein (MBP) and proteolipid protein (PLP). To generate a tolerogenic protein for the therapy of patients with MS, we have produced a protein fusion between the 21.5-kD isoform of MBP (MBP21.5) and a genetically engineered form of PLP (deltaPLP4). In this report, we describe the effects of treatment with this agent (MP4) on clinical disease in a murine model of demyelinating disease, experimental autoimmune encephalomyelitis (EAE). Treatment of SJL/J mice with MP4 after induction of EAE either by active immunization or by adoptive transfer of activated T cells completely prevented subsequent clinical paralysis. Importantly, the administration of MP4 completely suppressed the development of EAE initiated by the cotransfer of both MBP- and PLP-activated T cells. Prevention of clinical disease after the intravenous injection of MP4 was paralleled by the formation of long-lived functional peptide-MHC complexes in vivo, as well as by a significant reduction in both MBP- and PLP-specific T cell proliferative responses. Mice treated with MP4 were resistant to disease when rechallenged with an encephalitogenic PLP peptide emulsified in CFA, indicating that MP4 administration had a prolonged effect in vivo. Administration of MP4 was also found to markedly ameliorate the course of established clinical disease. Finally, MP4 therapy was equally efficacious in mice defective in Fas expression. These results support the conclusion that MP4 protein is highly effective in suppressing disease caused by multiple neuroantigen epitopes in experimentally induced demyelinating disease.

Full Text

The Full Text of this article is available as a PDF (268.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Nun A., Liblau R. S., Cohen L., Lehmann D., Tournier-Lasserve E., Rosenzweig A., Zhang J. W., Raus J. C., Bach M. A. Restricted T-cell receptor V beta gene usage by myelin basic protein-specific T-cell clones in multiple sclerosis: predominant genes vary in individuals. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2466–2470. doi: 10.1073/pnas.88.6.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bitar D. M., Whitacre C. C. Suppression of experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. Cell Immunol. 1988 Apr 1;112(2):364–370. doi: 10.1016/0008-8749(88)90305-x. [DOI] [PubMed] [Google Scholar]
  3. Brocke S., Gijbels K., Allegretta M., Ferber I., Piercy C., Blankenstein T., Martin R., Utz U., Karin N., Mitchell D. Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. Nature. 1996 Jan 25;379(6563):343–346. doi: 10.1038/379343a0. [DOI] [PubMed] [Google Scholar]
  4. Chou Y. K., Bourdette D. N., Offner H., Whitham R., Wang R. Y., Hashim G. A., Vandenbark A. A. Frequency of T cells specific for myelin basic protein and myelin proteolipid protein in blood and cerebrospinal fluid in multiple sclerosis. J Neuroimmunol. 1992 May;38(1-2):105–113. doi: 10.1016/0165-5728(92)90095-3. [DOI] [PubMed] [Google Scholar]
  5. Chou Y. K., Jones R. E., Bourdette D., Whitham R., Hashim G., Atherton J., Offner H., Vandenbark A. A. Human myelin basic protein (MBP) epitopes recognized by mouse MBP-selected T cell lines from multiple sclerosis patients. J Neuroimmunol. 1994 Jan;49(1-2):45–50. doi: 10.1016/0165-5728(94)90179-1. [DOI] [PubMed] [Google Scholar]
  6. Correale J., Gilmore W., McMillan M., Li S., McCarthy K., Le T., Weiner L. P. Patterns of cytokine secretion by autoreactive proteolipid protein-specific T cell clones during the course of multiple sclerosis. J Immunol. 1995 Mar 15;154(6):2959–2968. [PubMed] [Google Scholar]
  7. Correale J., McMillan M., McCarthy K., Le T., Weiner L. P. Isolation and characterization of autoreactive proteolipid protein-peptide specific T-cell clones from multiple sclerosis patients. Neurology. 1995 Jul;45(7):1370–1378. doi: 10.1212/wnl.45.7.1370. [DOI] [PubMed] [Google Scholar]
  8. Critchfield J. M., Racke M. K., Zúiga-Pflücker J. C., Cannella B., Raine C. S., Goverman J., Lenardo M. J. T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science. 1994 Feb 25;263(5150):1139–1143. doi: 10.1126/science.7509084. [DOI] [PubMed] [Google Scholar]
  9. Cross A. H., Tuohy V. K., Raine C. S. Development of reactivity to new myelin antigens during chronic relapsing autoimmune demyelination. Cell Immunol. 1993 Feb;146(2):261–269. doi: 10.1006/cimm.1993.1025. [DOI] [PubMed] [Google Scholar]
  10. Fallis R. J., Raine C. S., McFarlin D. E. Chronic relapsing experimental allergic encephalomyelitis in SJL mice following the adoptive transfer of an epitope-specific T cell line. J Neuroimmunol. 1989 Apr;22(2):93–105. doi: 10.1016/0165-5728(89)90039-8. [DOI] [PubMed] [Google Scholar]
  11. Fritz R. B., Zhao M. L. Encephalitogenicity of myelin basic protein exon-2 peptide in mice. J Neuroimmunol. 1994 Apr;51(1):1–6. doi: 10.1016/0165-5728(94)90122-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greer J. M., Kuchroo V. K., Sobel R. A., Lees M. B. Identification and characterization of a second encephalitogenic determinant of myelin proteolipid protein (residues 178-191) for SJL mice. J Immunol. 1992 Aug 1;149(3):783–788. [PubMed] [Google Scholar]
  13. Joshi N., Usuku K., Hauser S. L. The T-cell response to myelin basic protein in familial multiple sclerosis: diversity of fine specificity, restricting elements, and T-cell receptor usage. Ann Neurol. 1993 Sep;34(3):385–393. doi: 10.1002/ana.410340313. [DOI] [PubMed] [Google Scholar]
  14. Kearney E. R., Pape K. A., Loh D. Y., Jenkins M. K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity. 1994 Jul;1(4):327–339. doi: 10.1016/1074-7613(94)90084-1. [DOI] [PubMed] [Google Scholar]
  15. Kennedy M. K., Tan L. J., Dal Canto M. C., Tuohy V. K., Lu Z. J., Trotter J. L., Miller S. D. Inhibition of murine relapsing experimental autoimmune encephalomyelitis by immune tolerance to proteolipid protein and its encephalitogenic peptides. J Immunol. 1990 Feb 1;144(3):909–915. [PubMed] [Google Scholar]
  16. Lehmann P. V., Forsthuber T., Miller A., Sercarz E. E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature. 1992 Jul 9;358(6382):155–157. doi: 10.1038/358155a0. [DOI] [PubMed] [Google Scholar]
  17. Liblau R. S., Tisch R., Shokat K., Yang X., Dumont N., Goodnow C. C., McDevitt H. O. Intravenous injection of soluble antigen induces thymic and peripheral T-cells apoptosis. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3031–3036. doi: 10.1073/pnas.93.7.3031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lindsey J. W., Pappolla M., Steinman L. Reinduction of experimental autoimmune encephalomyelitis in mice. Cell Immunol. 1995 May;162(2):235–240. doi: 10.1006/cimm.1995.1074. [DOI] [PubMed] [Google Scholar]
  19. Markovic-Plese S., Fukaura H., Zhang J., al-Sabbagh A., Southwood S., Sette A., Kuchroo V. K., Hafler D. A. T cell recognition of immunodominant and cryptic proteolipid protein epitopes in humans. J Immunol. 1995 Jul 15;155(2):982–992. [PubMed] [Google Scholar]
  20. Martin R., Jaraquemada D., Flerlage M., Richert J., Whitaker J., Long E. O., McFarlin D. E., McFarland H. F. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J Immunol. 1990 Jul 15;145(2):540–548. [PubMed] [Google Scholar]
  21. Martin R., McFarland H. F., McFarlin D. E. Immunological aspects of demyelinating diseases. Annu Rev Immunol. 1992;10:153–187. doi: 10.1146/annurev.iy.10.040192.001101. [DOI] [PubMed] [Google Scholar]
  22. Massacesi L., Genain C. P., Lee-Parritz D., Letvin N. L., Canfield D., Hauser S. L. Active and passively induced experimental autoimmune encephalomyelitis in common marmosets: a new model for multiple sclerosis. Ann Neurol. 1995 Apr;37(4):519–530. doi: 10.1002/ana.410370415. [DOI] [PubMed] [Google Scholar]
  23. Matis L. A., Bookman M., Rosenberg S. A. Cloning with antigens and interleukin 2 of murine T lymphocytes having distinct functions. Methods Enzymol. 1987;150:342–351. doi: 10.1016/0076-6879(87)50092-1. [DOI] [PubMed] [Google Scholar]
  24. McCarron R. M., Fallis R. J., McFarlin D. E. Alterations in T cell antigen specificity and class II restriction during the course of chronic relapsing experimental allergic encephalomyelitis. J Neuroimmunol. 1990 Sep-Oct;29(1-3):73–79. doi: 10.1016/0165-5728(90)90149-h. [DOI] [PubMed] [Google Scholar]
  25. McRae B. L., Kennedy M. K., Tan L. J., Dal Canto M. C., Picha K. S., Miller S. D. Induction of active and adoptive relapsing experimental autoimmune encephalomyelitis (EAE) using an encephalitogenic epitope of proteolipid protein. J Neuroimmunol. 1992 Jun;38(3):229–240. doi: 10.1016/0165-5728(92)90016-e. [DOI] [PubMed] [Google Scholar]
  26. McRae B. L., Vanderlugt C. L., Dal Canto M. C., Miller S. D. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med. 1995 Jul 1;182(1):75–85. doi: 10.1084/jem.182.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Meinl E., Weber F., Drexler K., Morelle C., Ott M., Saruhan-Direskeneli G., Goebels N., Ertl B., Jechart G., Giegerich G. Myelin basic protein-specific T lymphocyte repertoire in multiple sclerosis. Complexity of the response and dominance of nested epitopes due to recruitment of multiple T cell clones. J Clin Invest. 1993 Dec;92(6):2633–2643. doi: 10.1172/JCI116879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Miller S. D., Karpus W. J. The immunopathogenesis and regulation of T-cell-mediated demyelinating diseases. Immunol Today. 1994 Aug;15(8):356–361. doi: 10.1016/0167-5699(94)90173-2. [DOI] [PubMed] [Google Scholar]
  29. Miller S. D., Vanderlugt C. L., Lenschow D. J., Pope J. G., Karandikar N. J., Dal Canto M. C., Bluestone J. A. Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity. 1995 Dec;3(6):739–745. doi: 10.1016/1074-7613(95)90063-2. [DOI] [PubMed] [Google Scholar]
  30. Murphy K. M., Heimberger A. B., Loh D. Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science. 1990 Dec 21;250(4988):1720–1723. doi: 10.1126/science.2125367. [DOI] [PubMed] [Google Scholar]
  31. Nicholson L. B., Greer J. M., Sobel R. A., Lees M. B., Kuchroo V. K. An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity. 1995 Oct;3(4):397–405. doi: 10.1016/1074-7613(95)90169-8. [DOI] [PubMed] [Google Scholar]
  32. Nicoletti I., Migliorati G., Pagliacci M. C., Grignani F., Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991 Jun 3;139(2):271–279. doi: 10.1016/0022-1759(91)90198-o. [DOI] [PubMed] [Google Scholar]
  33. Nye S. H., Pelfrey C. M., Burkwit J. J., Voskuhl R. R., Lenardo M. J., Mueller J. P. Purification of immunologically active recombinant 21.5 kDa isoform of human myelin basic protein. Mol Immunol. 1995 Oct;32(14-15):1131–1141. doi: 10.1016/0161-5890(95)00066-6. [DOI] [PubMed] [Google Scholar]
  34. Ohashi T., Yamamura T., Inobe J., Kondo T., Kunishita T., Tabira T. Analysis of proteolipid protein (PLP)-specific T cells in multiple sclerosis: identification of PLP 95-116 as an HLA-DR2,w15-associated determinant. Int Immunol. 1995 Nov;7(11):1771–1778. doi: 10.1093/intimm/7.11.1771. [DOI] [PubMed] [Google Scholar]
  35. Olsson T., Sun J., Hillert J., Höjeberg B., Ekre H. P., Andersson G., Olerup O., Link H. Increased numbers of T cells recognizing multiple myelin basic protein epitopes in multiple sclerosis. Eur J Immunol. 1992 Apr;22(4):1083–1087. doi: 10.1002/eji.1830220431. [DOI] [PubMed] [Google Scholar]
  36. Ota K., Matsui M., Milford E. L., Mackin G. A., Weiner H. L., Hafler D. A. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature. 1990 Jul 12;346(6280):183–187. doi: 10.1038/346183a0. [DOI] [PubMed] [Google Scholar]
  37. Pelfrey C. M., Trotter J. L., Tranquill L. R., McFarland H. F. Identification of a novel T cell epitope of human proteolipid protein (residues 40-60) recognized by proliferative and cytolytic CD4+ T cells from multiple sclerosis patients. J Neuroimmunol. 1993 Jul;46(1-2):33–42. doi: 10.1016/0165-5728(93)90231-m. [DOI] [PubMed] [Google Scholar]
  38. Pelfrey C. M., Trotter J. L., Tranquill L. R., McFarland H. F. Identification of a second T cell epitope of human proteolipid protein (residues 89-106) recognized by proliferative and cytolytic CD4+ T cells from multiple sclerosis patients. J Neuroimmunol. 1994 Sep;53(2):153–161. doi: 10.1016/0165-5728(94)90025-6. [DOI] [PubMed] [Google Scholar]
  39. Perry L. L., Barzaga-Gilbert E., Trotter J. L. T cell sensitization to proteolipid protein in myelin basic protein-induced relapsing experimental allergic encephalomyelitis. J Neuroimmunol. 1991 Jul;33(1):7–15. doi: 10.1016/0165-5728(91)90029-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pette M., Fujita K., Wilkinson D., Altmann D. M., Trowsdale J., Giegerich G., Hinkkanen A., Epplen J. T., Kappos L., Wekerle H. Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple-sclerosis patients and healthy donors. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7968–7972. doi: 10.1073/pnas.87.20.7968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pettinelli C. B., McFarlin D. E. Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+ 2- T lymphocytes. J Immunol. 1981 Oct;127(4):1420–1423. [PubMed] [Google Scholar]
  42. Racke M. K., Critchfield J. M., Quigley L., Cannella B., Raine C. S., McFarland H. F., Lenardo M. J. Intravenous antigen administration as a therapy for autoimmune demyelinating disease. Ann Neurol. 1996 Jan;39(1):46–56. doi: 10.1002/ana.410390108. [DOI] [PubMed] [Google Scholar]
  43. Samson M. F., Smilek D. E. Reversal of acute experimental autoimmune encephalomyelitis and prevention of relapses by treatment with a myelin basic protein peptide analogue modified to form long-lived peptide-MHC complexes. J Immunol. 1995 Sep 1;155(5):2737–2746. [PubMed] [Google Scholar]
  44. Segal B. M., Raine C. S., McFarlin D. E., Voskuhl R. R., McFarland H. F. Experimental allergic encephalomyelitis induced by the peptide encoded by exon 2 of the MBP gene, a peptide implicated in remyelination. J Neuroimmunol. 1994 Apr;51(1):7–19. doi: 10.1016/0165-5728(94)90123-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shanmugam A., Copie-Bergman C., Caillat S., Bach J. F., Tournier-Lasserve E. In vivo clonal expression of T lymphocytes specific for an immunodominant N-terminal myelin basic protein epitope in healthy individuals. J Neuroimmunol. 1995 Jun;59(1-2):165–172. doi: 10.1016/0165-5728(95)00041-y. [DOI] [PubMed] [Google Scholar]
  46. Sharma S. D., Nag B., Su X. M., Green D., Spack E., Clark B. R., Sriram S. Antigen-specific therapy of experimental allergic encephalomyelitis by soluble class II major histocompatibility complex-peptide complexes. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11465–11469. doi: 10.1073/pnas.88.24.11465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Singer G. G., Abbas A. K. The fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity. 1994 Aug;1(5):365–371. doi: 10.1016/1074-7613(94)90067-1. [DOI] [PubMed] [Google Scholar]
  48. Sobel R. A., Greer J. M., Kuchroo V. K. Minireview: autoimmune responses to myelin proteolipid protein. Neurochem Res. 1994 Aug;19(8):915–921. doi: 10.1007/BF00968701. [DOI] [PubMed] [Google Scholar]
  49. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  50. Sun J. B., Olsson T., Wang W. Z., Xiao B. G., Kostulas V., Fredrikson S., Ekre H. P., Link H. Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls. Eur J Immunol. 1991 Jun;21(6):1461–1468. doi: 10.1002/eji.1830210620. [DOI] [PubMed] [Google Scholar]
  51. Tan L. J., Kennedy M. K., Dal Canto M. C., Miller S. D. Successful treatment of paralytic relapses in adoptive experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance. J Immunol. 1991 Sep 15;147(6):1797–1802. [PubMed] [Google Scholar]
  52. Tucek-Szabo C. L., Andjelić S., Lacy E., Elkon K. B., Nikolić-Zugić J. Surface T cell Fas receptor/CD95 regulation, in vivo activation, and apoptosis. Activation-induced death can occur without Fas receptor. J Immunol. 1996 Jan 1;156(1):192–200. [PubMed] [Google Scholar]
  53. Tuohy V. K., Lu Z. J., Sobel R. A., Laursen R. A., Lees M. B. A synthetic peptide from myelin proteolipid protein induces experimental allergic encephalomyelitis. J Immunol. 1988 Aug 15;141(4):1126–1130. [PubMed] [Google Scholar]
  54. Tuohy V. K., Lu Z., Sobel R. A., Laursen R. A., Lees M. B. Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice. J Immunol. 1989 Mar 1;142(5):1523–1527. [PubMed] [Google Scholar]
  55. Tuohy V. K. Peptide determinants of myelin proteolipid protein (PLP) in autoimmune demyelinating disease: a review. Neurochem Res. 1994 Aug;19(8):935–944. doi: 10.1007/BF00968703. [DOI] [PubMed] [Google Scholar]
  56. Tuohy V. K., Sobel R. A., Lees M. B. Myelin proteolipid protein-induced experimental allergic encephalomyelitis. Variations of disease expression in different strains of mice. J Immunol. 1988 Mar 15;140(6):1868–1873. [PubMed] [Google Scholar]
  57. Tuohy V. K., Sobel R. A., Lu Z., Laursen R. A., Lees M. B. Myelin proteolipid protein: minimum sequence requirements for active induction of autoimmune encephalomyelitis in SWR/J and SJL/J mice. J Neuroimmunol. 1992 Jul;39(1-2):67–74. doi: 10.1016/0165-5728(92)90175-k. [DOI] [PubMed] [Google Scholar]
  58. Valli A., Sette A., Kappos L., Oseroff C., Sidney J., Miescher G., Hochberger M., Albert E. D., Adorini L. Binding of myelin basic protein peptides to human histocompatibility leukocyte antigen class II molecules and their recognition by T cells from multiple sclerosis patients. J Clin Invest. 1993 Feb;91(2):616–628. doi: 10.1172/JCI116242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Van Parijs L., Ibraghimov A., Abbas A. K. The roles of costimulation and Fas in T cell apoptosis and peripheral tolerance. Immunity. 1996 Mar;4(3):321–328. doi: 10.1016/s1074-7613(00)80440-9. [DOI] [PubMed] [Google Scholar]
  60. Weimbs T., Stoffel W. Proteolipid protein (PLP) of CNS myelin: positions of free, disulfide-bonded, and fatty acid thioester-linked cysteine residues and implications for the membrane topology of PLP. Biochemistry. 1992 Dec 15;31(49):12289–12296. doi: 10.1021/bi00164a002. [DOI] [PubMed] [Google Scholar]
  61. Whitham R. H., Bourdette D. N., Hashim G. A., Herndon R. M., Ilg R. C., Vandenbark A. A., Offner H. Lymphocytes from SJL/J mice immunized with spinal cord respond selectively to a peptide of proteolipid protein and transfer relapsing demyelinating experimental autoimmune encephalomyelitis. J Immunol. 1991 Jan 1;146(1):101–107. [PubMed] [Google Scholar]
  62. Whitham R. H., Jones R. E., Hashim G. A., Hoy C. M., Wang R. Y., Vandenbark A. A., Offner H. Location of a new encephalitogenic epitope (residues 43 to 64) in proteolipid protein that induces relapsing experimental autoimmune encephalomyelitis in PL/J and (SJL x PL)F1 mice. J Immunol. 1991 Dec 1;147(11):3803–3808. [PubMed] [Google Scholar]
  63. Zhang J., Markovic-Plese S., Lacet B., Raus J., Weiner H. L., Hafler D. A. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med. 1994 Mar 1;179(3):973–984. doi: 10.1084/jem.179.3.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Zhao M. L., Fritz R. B. The immune response to a subdominant epitope in myelin basic protein exon-2 results in immunity to intra- and intermolecular dominant epitopes. J Neuroimmunol. 1995 Sep;61(2):179–184. doi: 10.1016/0165-5728(95)00090-o. [DOI] [PubMed] [Google Scholar]
  65. Zheng L., Fisher G., Miller R. E., Peschon J., Lynch D. H., Lenardo M. J. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature. 1995 Sep 28;377(6547):348–351. doi: 10.1038/377348a0. [DOI] [PubMed] [Google Scholar]
  66. van der Veen R. C., Trotter J. L., Clark H. B., Kapp J. A. The adoptive transfer of chronic relapsing experimental allergic encephalomyelitis with lymph node cells sensitized to myelin proteolipid protein. J Neuroimmunol. 1989 Feb;21(2-3):183–191. doi: 10.1016/0165-5728(89)90174-4. [DOI] [PubMed] [Google Scholar]
  67. van der Veen R. C., Trotter J. L., Hickey W. F., Kapp J. A. The development and characterization of encephalitogenic cloned T cells specific for myelin proteolipid protein. J Neuroimmunol. 1990 Feb;26(2):139–145. doi: 10.1016/0165-5728(90)90085-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES