Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Oct 1;98(7):1676–1683. doi: 10.1172/JCI118963

Epitope-specific T cell tolerance to phospholipase A2 in bee venom immunotherapy and recovery by IL-2 and IL-15 in vitro.

C A Akdis 1, M Akdis 1, T Blesken 1, D Wymann 1, S S Alkan 1, U Müller 1, K Blaser 1
PMCID: PMC507602  PMID: 8833918

Abstract

Bee venom phospholipase A2 (PLA) is the major allergen in bee sting allergy. It displays three peptide and a glycopeptide T cell epitopes, which are recognized by both allergic and non-allergic bee venom sensitized subjects. In this study PLA- and PLA epitope-specific T cell and cytokine responses in PBMC of bee sting allergic patients were investigated before and after 2 mo of rush immunotherapy with whole bee venom. After successful immunotherapy, PLA and T cell epitope peptide-specific T cell proliferation was suppressed. In addition the PLA- and peptide-induced secretion of type 2 (IL-4, IL-5, and IL-13), as well as type 1 (IL-2 and IFN-gamma) cytokines were abolished, whereas tetanus toxoid-induced cytokine production and proliferation remained unchanged. By culturing PBMC with Ag in the presence of IL-2 or IL-15 the specifically tolerized T cell response could be restored with respect to specific proliferation and secretion of the type 1 T cell cytokines, IL-2 and IFN-gamma. In contrast, IL-4, IL-5, and IL-13 remained suppressed. Treatment of tolerized T cells with IL-4 only partially restored proliferation and induced formation of distinct type 2 cytokine pattern. In spite of the allergen-specific tolerance in T cells, in vitro produced anti-PLA IgE and IgG4 Ab and their corresponding serum levels slightly increased during immunotherapy, while the PLA-specific IgE/IgG4 ratio changed in favor of IgG4. These findings indicate that bee venom immunotherapy induces a state of peripheral tolerance in allergen-specific T cells, but not in specific B cells. The state of T cell tolerance and cytokine pattern can be in vitro modulated by the cytokines IL-2, IL-4, and IL-15, suggesting the importance of microenvironmental cytokines leading to success or failure in immunotherapy.

Full Text

The Full Text of this article is available as a PDF (221.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aalberse R. C., van der Gaag R., van Leeuwen J. Serologic aspects of IgG4 antibodies. I. Prolonged immunization results in an IgG4-restricted response. J Immunol. 1983 Feb;130(2):722–726. [PubMed] [Google Scholar]
  2. Alkan S., Akdis C., Towbin H. Chemiluminescent and enzyme-linked immuno assays for sensitive detection of human IFN-gamma. J Immunoassay. 1994 Aug;15(3):217–238. doi: 10.1080/15321819408009574. [DOI] [PubMed] [Google Scholar]
  3. Armitage R. J., Macduff B. M., Eisenman J., Paxton R., Grabstein K. H. IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J Immunol. 1995 Jan 15;154(2):483–490. [PubMed] [Google Scholar]
  4. Birnbaum J., Charpin D., Vervloet D. Rapid Hymenoptera venom immunotherapy: comparative safety of three protocols. Clin Exp Allergy. 1993 Mar;23(3):226–230. doi: 10.1111/j.1365-2222.1993.tb00886.x. [DOI] [PubMed] [Google Scholar]
  5. Boussiotis V. A., Barber D. L., Nakarai T., Freeman G. J., Gribben J. G., Bernstein G. M., D'Andrea A. D., Ritz J., Nadler L. M. Prevention of T cell anergy by signaling through the gamma c chain of the IL-2 receptor. Science. 1994 Nov 11;266(5187):1039–1042. doi: 10.1126/science.7973657. [DOI] [PubMed] [Google Scholar]
  6. Burstein H. J., Shea C. M., Abbas A. K. Aqueous antigens induce in vivo tolerance selectively in IL-2- and IFN-gamma-producing (Th1) cells. J Immunol. 1992 Jun 15;148(12):3687–3691. [PubMed] [Google Scholar]
  7. Carballido J. M., Carballido-Perrig N., Kägi M. K., Meloen R. H., Wüthrich B., Heusser C. H., Blaser K. T cell epitope specificity in human allergic and nonallergic subjects to bee venom phospholipase A2. J Immunol. 1993 Apr 15;150(8 Pt 1):3582–3591. [PubMed] [Google Scholar]
  8. Carballido J. M., Carballido-Perrig N., Oberli-Schrämmli A., Heusser C. H., Blaser K. Regulation of IgE and IgG4 responses by allergen specific T-cell clones to bee venom phospholipase A2 in vitro. J Allergy Clin Immunol. 1994 Apr;93(4):758–767. doi: 10.1016/0091-6749(94)90256-9. [DOI] [PubMed] [Google Scholar]
  9. Carballido J. M., Carballido-Perrig N., Terres G., Heusser C. H., Blaser K. Bee venom phospholipase A2-specific T cell clones from human allergic and non-allergic individuals: cytokine patterns change in response to the antigen concentration. Eur J Immunol. 1992 Jun;22(6):1357–1363. doi: 10.1002/eji.1830220605. [DOI] [PubMed] [Google Scholar]
  10. Creticos P. S., Adkinson N. F., Jr, Kagey-Sobotka A., Proud D., Meier H. L., Naclerio R. M., Lichtenstein L. M., Norman P. S. Nasal challenge with ragweed pollen in hay fever patients. Effect of immunotherapy. J Clin Invest. 1985 Dec;76(6):2247–2253. doi: 10.1172/JCI112233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Del Prete G., Maggi E., Parronchi P., Chrétien I., Tiri A., Macchia D., Ricci M., Banchereau J., De Vries J., Romagnani S. IL-4 is an essential factor for the IgE synthesis induced in vitro by human T cell clones and their supernatants. J Immunol. 1988 Jun 15;140(12):4193–4198. [PubMed] [Google Scholar]
  12. Dudler T., Altmann F., Carballido J. M., Blaser K. Carbohydrate-dependent, HLA class II-restricted, human T cell response to the bee venom allergen phospholipase A2 in allergic patients. Eur J Immunol. 1995 Feb;25(2):538–542. doi: 10.1002/eji.1830250235. [DOI] [PubMed] [Google Scholar]
  13. Essery G., Feldmann M., Lamb J. R. Interleukin-2 can prevent and reverse antigen-induced unresponsiveness in cloned human T lymphocytes. Immunology. 1988 Jul;64(3):413–417. [PMC free article] [PubMed] [Google Scholar]
  14. Fasler S., Aversa G., Terr A., Thestrup-Pedersen K., de Vries J. E., Yssel H. Peptide-induced anergy in allergen-specific human Th2 cells results in lack of cytokine production and B cell help for IgE synthesis. Reversal by IL-2, not by IL-4 or IL-13. J Immunol. 1995 Nov 1;155(9):4199–4206. [PubMed] [Google Scholar]
  15. Ferrante A., Mocatta F., Goh D. H. Changes in IgG and IgE antibody levels to bee venom during immunotherapy. Int Arch Allergy Appl Immunol. 1986;81(3):284–287. doi: 10.1159/000234148. [DOI] [PubMed] [Google Scholar]
  16. Furin M. J., Norman P. S., Creticos P. S., Proud D., Kagey-Sobotka A., Lichtenstein L. M., Naclerio R. M. Immunotherapy decreases antigen-induced eosinophil cell migration into the nasal cavity. J Allergy Clin Immunol. 1991 Jul;88(1):27–32. doi: 10.1016/0091-6749(91)90297-2. [DOI] [PubMed] [Google Scholar]
  17. Gahring L. C., Weigle W. O. The induction of peripheral T cell unresponsiveness in adult mice by monomeric human gamma-globulin. J Immunol. 1989 Oct 1;143(7):2094–2100. [PubMed] [Google Scholar]
  18. Gammon G., Sercarz E. E., Benichou G. The dominant self and the cryptic self: shaping the autoreactive T-cell repertoire. Immunol Today. 1991 Jun;12(6):193–195. doi: 10.1016/0167-5699(91)90052-U. [DOI] [PubMed] [Google Scholar]
  19. Gammon G., Shastri N., Cogswell J., Wilbur S., Sadegh-Nasseri S., Krzych U., Miller A., Sercarz E. The choice of T-cell epitopes utilized on a protein antigen depends on multiple factors distant from, as well as at the determinant site. Immunol Rev. 1987 Aug;98:53–73. doi: 10.1111/j.1600-065x.1987.tb00519.x. [DOI] [PubMed] [Google Scholar]
  20. Gascan H., Gauchat J. F., Aversa G., Van Vlasselaer P., de Vries J. E. Anti-CD40 monoclonal antibodies or CD4+ T cell clones and IL-4 induce IgG4 and IgE switching in purified human B cells via different signaling pathways. J Immunol. 1991 Jul 1;147(1):8–13. [PubMed] [Google Scholar]
  21. Gilbert K. M., Hoang K. D., Weigle W. O. Th1 and Th2 clones differ in their response to a tolerogenic signal. J Immunol. 1990 Mar 15;144(6):2063–2071. [PubMed] [Google Scholar]
  22. Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
  23. Grabstein K. H., Eisenman J., Shanebeck K., Rauch C., Srinivasan S., Fung V., Beers C., Richardson J., Schoenborn M. A., Ahdieh M. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science. 1994 May 13;264(5161):965–968. doi: 10.1126/science.8178155. [DOI] [PubMed] [Google Scholar]
  24. Graft D. F. Venom immunotherapy for stinging insect allergy. Clin Rev Allergy. 1987 May;5(2):149–159. doi: 10.1007/BF02991204. [DOI] [PubMed] [Google Scholar]
  25. Held W., Stucki M., Heusser C., Blaser K. Production of human antibodies to bee venom phospholipase A2 in vitro. Scand J Immunol. 1989 Feb;29(2):203–209. doi: 10.1111/j.1365-3083.1989.tb01117.x. [DOI] [PubMed] [Google Scholar]
  26. Hoyne G. F., O'Hehir R. E., Wraith D. C., Thomas W. R., Lamb J. R. Inhibition of T cell and antibody responses to house dust mite allergen by inhalation of the dominant T cell epitope in naive and sensitized mice. J Exp Med. 1993 Nov 1;178(5):1783–1788. doi: 10.1084/jem.178.5.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hussain R., Poindexter R. W., Ottesen E. A. Control of allergic reactivity in human filariasis. Predominant localization of blocking antibody to the IgG4 subclass. J Immunol. 1992 May 1;148(9):2731–2737. [PubMed] [Google Scholar]
  28. Jutel M., Pichler W. J., Skrbic D., Urwyler A., Dahinden C., Müller U. R. Bee venom immunotherapy results in decrease of IL-4 and IL-5 and increase of IFN-gamma secretion in specific allergen-stimulated T cell cultures. J Immunol. 1995 Apr 15;154(8):4187–4194. [PubMed] [Google Scholar]
  29. Kapsenberg M. L., Wierenga E. A., Bos J. D., Jansen H. M. Functional subsets of allergen-reactive human CD4+ T cells. Immunol Today. 1991 Nov;12(11):392–395. doi: 10.1016/0167-5699(91)90137-I. [DOI] [PubMed] [Google Scholar]
  30. Kuchler K., Gmachl M., Sippl M. J., Kreil G. Analysis of the cDNA for phospholipase A2 from honeybee venom glands. The deduced amino acid sequence reveals homology to the corresponding vertebrate enzymes. Eur J Biochem. 1989 Sep 1;184(1):249–254. doi: 10.1111/j.1432-1033.1989.tb15014.x. [DOI] [PubMed] [Google Scholar]
  31. Lamb J. R., Skidmore B. J., Green N., Chiller J. M., Feldmann M. Induction of tolerance in influenza virus-immune T lymphocyte clones with synthetic peptides of influenza hemagglutinin. J Exp Med. 1983 May 1;157(5):1434–1447. doi: 10.1084/jem.157.5.1434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lane P., Brocker T., Hubele S., Padovan E., Lanzavecchia A., McConnell F. Soluble CD40 ligand can replace the normal T cell-derived CD40 ligand signal to B cells in T cell-dependent activation. J Exp Med. 1993 Apr 1;177(4):1209–1213. doi: 10.1084/jem.177.4.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lockey R. F., Turkeltaub P. C., Olive E. S., Hubbard J. M., Baird-Warren I. A., Bukantz S. C. The Hymenoptera venom study. III: Safety of venom immunotherapy. J Allergy Clin Immunol. 1990 Nov;86(5):775–780. doi: 10.1016/s0091-6749(05)80182-4. [DOI] [PubMed] [Google Scholar]
  34. Lucas A. H. IgG subclass-restricted immune responses to allergens. Springer Semin Immunopathol. 1990;12(4):385–400. doi: 10.1007/BF00225325. [DOI] [PubMed] [Google Scholar]
  35. Miller A., Lider O., Weiner H. L. Antigen-driven bystander suppression after oral administration of antigens. J Exp Med. 1991 Oct 1;174(4):791–798. doi: 10.1084/jem.174.4.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mosmann T. R., Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 1996 Mar;17(3):138–146. doi: 10.1016/0167-5699(96)80606-2. [DOI] [PubMed] [Google Scholar]
  37. Mueller D. L., Jenkins M. K., Schwartz R. H. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol. 1989;7:445–480. doi: 10.1146/annurev.iy.07.040189.002305. [DOI] [PubMed] [Google Scholar]
  38. Mueller H. L. Diagnosis and treatment of insect sensitivity. J Asthma Res. 1966 Jun;3(4):331–333. doi: 10.3109/02770906609106941. [DOI] [PubMed] [Google Scholar]
  39. Murphy D. B. T cell mediated immunosuppression. Curr Opin Immunol. 1993 Jun;5(3):411–417. doi: 10.1016/0952-7915(93)90061-v. [DOI] [PubMed] [Google Scholar]
  40. Müller U. R., Dudler T., Schneider T., Crameri R., Fischer H., Skrbic D., Maibach R., Blaser K., Suter M. Type I skin reactivity to native and recombinant phospholipase A2 from honeybee venom is similar. J Allergy Clin Immunol. 1995 Sep;96(3):395–402. doi: 10.1016/s0091-6749(95)70059-5. [DOI] [PubMed] [Google Scholar]
  41. Müller U., Helbling A., Bischof M. Predictive value of venom-specific IgE, IgG and IgG subclass antibodies in patients on immunotherapy with honey bee venom. Allergy. 1989 Aug;44(6):412–418. doi: 10.1111/j.1398-9995.1989.tb04172.x. [DOI] [PubMed] [Google Scholar]
  42. Nguyen D. D., Beck L., Spiegelberg H. L. Anti-CD3-induced anergy in cloned human Th0, Th1, and Th2 cells. Cell Immunol. 1995 Oct 1;165(1):153–157. doi: 10.1006/cimm.1995.1199. [DOI] [PubMed] [Google Scholar]
  43. Nossal G. J., Pike B. L. Clonal anergy: persistence in tolerant mice of antigen-binding B lymphocytes incapable of responding to antigen or mitogen. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1602–1606. doi: 10.1073/pnas.77.3.1602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Otsuka H., Mezawa A., Ohnishi M., Okubo K., Seki H., Okuda M. Changes in nasal metachromatic cells during allergen immunotherapy. Clin Exp Allergy. 1991 Jan;21(1):115–119. doi: 10.1111/j.1365-2222.1991.tb00812.x. [DOI] [PubMed] [Google Scholar]
  45. Punnonen J., Aversa G., Cocks B. G., McKenzie A. N., Menon S., Zurawski G., de Waal Malefyt R., de Vries J. E. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3730–3734. doi: 10.1073/pnas.90.8.3730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pène J., Rousset F., Brière F., Chrétien I., Bonnefoy J. Y., Spits H., Yokota T., Arai N., Arai K., Banchereau J. IgE production by normal human lymphocytes is induced by interleukin 4 and suppressed by interferons gamma and alpha and prostaglandin E2. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6880–6884. doi: 10.1073/pnas.85.18.6880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rak S., Löwhagen O., Venge P. The effect of immunotherapy on bronchial hyperresponsiveness and eosinophil cationic protein in pollen-allergic patients. J Allergy Clin Immunol. 1988 Sep;82(3 Pt 1):470–480. doi: 10.1016/0091-6749(88)90021-8. [DOI] [PubMed] [Google Scholar]
  48. Randolph C. C., Reisman R. E. Evaluation of decline in serum venom-specific IgE as a criterion for stopping venom immunotherapy. J Allergy Clin Immunol. 1986 Jun;77(6):823–827. doi: 10.1016/0091-6749(86)90379-9. [DOI] [PubMed] [Google Scholar]
  49. Reid M. J., Moss R. B., Hsu Y. P., Kwasnicki J. M., Commerford T. M., Nelson B. L. Seasonal asthma in northern California: allergic causes and efficacy of immunotherapy. J Allergy Clin Immunol. 1986 Oct;78(4 Pt 1):590–600. doi: 10.1016/0091-6749(86)90076-x. [DOI] [PubMed] [Google Scholar]
  50. Ria F., Chan B. M., Scherer M. T., Smith J. A., Gefter M. L. Immunological activity of covalently linked T-cell epitopes. Nature. 1990 Jan 25;343(6256):381–383. doi: 10.1038/343381a0. [DOI] [PubMed] [Google Scholar]
  51. Robinson D. S., Hamid Q., Ying S., Tsicopoulos A., Barkans J., Bentley A. M., Corrigan C., Durham S. R., Kay A. B. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med. 1992 Jan 30;326(5):298–304. doi: 10.1056/NEJM199201303260504. [DOI] [PubMed] [Google Scholar]
  52. Rocklin R. E., Sheffer A. L., Greineder D. K., Melmon K. L. Generation of antigen-specific suppressor cells during allergy desensitization. N Engl J Med. 1980 May 29;302(22):1213–1219. doi: 10.1056/NEJM198005293022201. [DOI] [PubMed] [Google Scholar]
  53. Schwartz R. H. A cell culture model for T lymphocyte clonal anergy. Science. 1990 Jun 15;248(4961):1349–1356. doi: 10.1126/science.2113314. [DOI] [PubMed] [Google Scholar]
  54. Secrist H., Chelen C. J., Wen Y., Marshall J. D., Umetsu D. T. Allergen immunotherapy decreases interleukin 4 production in CD4+ T cells from allergic individuals. J Exp Med. 1993 Dec 1;178(6):2123–2130. doi: 10.1084/jem.178.6.2123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Seminario M. C., Gleich G. J. The role of eosinophils in the pathogenesis of asthma. Curr Opin Immunol. 1994 Dec;6(6):860–864. doi: 10.1016/0952-7915(94)90005-1. [DOI] [PubMed] [Google Scholar]
  56. Sobotka A. K., Franklin R. M., Adkinson N. F., Jr, Valentine M., Baer H., Lichtenstein L. M. Allergy to insect stings. II. Phospholipase A: the major allergen in honeybee venom. J Allergy Clin Immunol. 1976 Jan;57(1):29–40. doi: 10.1016/0091-6749(76)90076-2. [DOI] [PubMed] [Google Scholar]
  57. Varney V. A., Hamid Q. A., Gaga M., Ying S., Jacobson M., Frew A. J., Kay A. B., Durham S. R. Influence of grass pollen immunotherapy on cellular infiltration and cytokine mRNA expression during allergen-induced late-phase cutaneous responses. J Clin Invest. 1993 Aug;92(2):644–651. doi: 10.1172/JCI116633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Walker C., Virchow J. C., Jr, Bruijnzeel P. L., Blaser K. T cell subsets and their soluble products regulate eosinophilia in allergic and nonallergic asthma. J Immunol. 1991 Mar 15;146(6):1829–1835. [PubMed] [Google Scholar]
  59. von Grünigen R., Schneider C. H. Antigenic structure of the hexacosapeptide melittin: evidence for three determinants, one with a helical conformation. Immunology. 1989 Mar;66(3):339–342. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES