Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Oct 15;98(8):1773–1779. doi: 10.1172/JCI118976

Direct preconditioning of cultured chick ventricular myocytes. Novel functions of cardiac adenosine A2a and A3 receptors.

J Strickler 1, K A Jacobson 1, B T Liang 1
PMCID: PMC507615  PMID: 8878427

Abstract

Preconditioning with brief ischemia before a sustained period of ischemia reduces infarct size in the perfused heart. A cultured chick ventricular myocyte model was developed to investigate the role of adenosine receptor subtypes in cardiac preconditioning. Brief hypoxic exposure, termed preconditioning hypoxia, prior to prolonged hypoxia, protected myocytes against injury induced by the prolonged hypoxia. Activation of the adenosine A1 receptor with CCPA or the A3 receptor with C1-IB-MECA can replace preconditioning hypoxia and simulate preconditioning, with a maximal effect at 100 nM. While activation of the A2a receptor by 1 microM CGS21680 could not mimic preconditioning, its stimulation during preconditioning hypoxia, however, attenuated the protection against hypoxia-induced injury. Blockade of A2a receptors with the selective antagonist CSC (1 microM) during preconditioning hypoxia enhanced the protective effect of preconditioning. Nifedipine, which blocked the A2a receptor-mediated calcium entry, abolished the A2a agonist-induced attenuation of preconditioning. Isoproterenol, forskolin, and BayK 8644, which stimulated calcium entry, also attenuated preconditioning. Nifedipine blocked the increase in calcium uptake by these agents as well as their attenuating effect on preconditioning. The present study provides the first evidence that the adenosine A3 receptor is present on ventricular myocytes and can mediate simulation of preconditioning. The data demonstrate, for the first time, that activation of the A2a receptor antagonizes the preconditioning effect of adenosine, with increased calcium entry during the preconditioning stimuli as a novel mechanism.

Full Text

The Full Text of this article is available as a PDF (181.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong S., Ganote C. E. Adenosine receptor specificity in preconditioning of isolated rabbit cardiomyocytes: evidence of A3 receptor involvement. Cardiovasc Res. 1994 Jul;28(7):1049–1056. doi: 10.1093/cvr/28.7.1049. [DOI] [PubMed] [Google Scholar]
  2. Auchampach J. A., Grover G. J., Gross G. J. Blockade of ischaemic preconditioning in dogs by the novel ATP dependent potassium channel antagonist sodium 5-hydroxydecanoate. Cardiovasc Res. 1992 Nov;26(11):1054–1062. doi: 10.1093/cvr/26.11.1054. [DOI] [PubMed] [Google Scholar]
  3. Babbitt D. G., Virmani R., Forman M. B. Intracoronary adenosine administered after reperfusion limits vascular injury after prolonged ischemia in the canine model. Circulation. 1989 Nov;80(5):1388–1399. doi: 10.1161/01.cir.80.5.1388. [DOI] [PubMed] [Google Scholar]
  4. Barry W. H., Smith T. W. Mechanisms of transmembrane calcium movement in cultured chick embryo ventricular cells. J Physiol. 1982 Apr;325:243–260. doi: 10.1113/jphysiol.1982.sp014148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cribier A., Korsatz L., Koning R., Rath P., Gamra H., Stix G., Merchant S., Chan C., Letac B. Improved myocardial ischemic response and enhanced collateral circulation with long repetitive coronary occlusion during angioplasty: a prospective study. J Am Coll Cardiol. 1992 Sep;20(3):578–586. doi: 10.1016/0735-1097(92)90011-b. [DOI] [PubMed] [Google Scholar]
  6. DeHann R. L. Regulation of spontaneous activity and growth of embryonic chick heart cells in tissue culture. Dev Biol. 1967 Sep;16(3):216–249. doi: 10.1016/0012-1606(67)90025-5. [DOI] [PubMed] [Google Scholar]
  7. Deutsch E., Berger M., Kussmaul W. G., Hirshfeld J. W., Jr, Herrmann H. C., Laskey W. K. Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features. Circulation. 1990 Dec;82(6):2044–2051. doi: 10.1161/01.cir.82.6.2044. [DOI] [PubMed] [Google Scholar]
  8. Dobson J. G., Jr Mechanism of adenosine inhibition of catecholamine-induced responses in heart. Circ Res. 1983 Feb;52(2):151–160. doi: 10.1161/01.res.52.2.151. [DOI] [PubMed] [Google Scholar]
  9. Ely S. W., Berne R. M. Protective effects of adenosine in myocardial ischemia. Circulation. 1992 Mar;85(3):893–904. doi: 10.1161/01.cir.85.3.893. [DOI] [PubMed] [Google Scholar]
  10. Gallo-Rodriguez C., Ji X. D., Melman N., Siegman B. D., Sanders L. H., Orlina J., Fischer B., Pu Q., Olah M. E., van Galen P. J. Structure-activity relationships of N6-benzyladenosine-5'-uronamides as A3-selective adenosine agonists. J Med Chem. 1994 Mar 4;37(5):636–646. doi: 10.1021/jm00031a014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Galper J. B., Smith T. W. Properties of muscarinic acetylcholine receptors in heart cell cultures. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5831–5835. doi: 10.1073/pnas.75.12.5831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hori M., Inoue M., Kitakaze M., Koretsune Y., Iwai K., Tamai J., Ito H., Kitabatake A., Sato T., Kamada T. Role of adenosine in hyperemic response of coronary blood flow in microembolization. Am J Physiol. 1986 Mar;250(3 Pt 2):H509–H518. doi: 10.1152/ajpheart.1986.250.3.H509. [DOI] [PubMed] [Google Scholar]
  13. Ikonomidis J. S., Tumiati L. C., Weisel R. D., Mickle D. A., Li R. K. Preconditioning human ventricular cardiomyocytes with brief periods of simulated ischaemia. Cardiovasc Res. 1994 Aug;28(8):1285–1291. doi: 10.1093/cvr/28.8.1285. [DOI] [PubMed] [Google Scholar]
  14. Jacobson K. A., Nikodijević O., Padgett W. L., Gallo-Rodriguez C., Maillard M., Daly J. W. 8-(3-Chlorostyryl)caffeine (CSC) is a selective A2-adenosine antagonist in vitro and in vivo. FEBS Lett. 1993 May 24;323(1-2):141–144. doi: 10.1016/0014-5793(93)81466-d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kim H. O., Ji X. D., Siddiqi S. M., Olah M. E., Stiles G. L., Jacobson K. A. 2-Substitution of N6-benzyladenosine-5'-uronamides enhances selectivity for A3 adenosine receptors. J Med Chem. 1994 Oct 14;37(21):3614–3621. doi: 10.1021/jm00047a018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Li G. C., Vasquez J. A., Gallagher K. P., Lucchesi B. R. Myocardial protection with preconditioning. Circulation. 1990 Aug;82(2):609–619. doi: 10.1161/01.cir.82.2.609. [DOI] [PubMed] [Google Scholar]
  17. Liang B. T. Characterization of the adenosine receptor in cultured embryonic chick atrial myocytes: coupling to modulation of contractility and adenylate cyclase activity and identification by direct radioligand binding. J Pharmacol Exp Ther. 1989 Jun;249(3):775–784. [PubMed] [Google Scholar]
  18. Liang B. T., Haltiwanger B. Adenosine A2a and A2b receptors in cultured fetal chick heart cells. High- and low-affinity coupling to stimulation of myocyte contractility and cAMP accumulation. Circ Res. 1995 Feb;76(2):242–251. doi: 10.1161/01.res.76.2.242. [DOI] [PubMed] [Google Scholar]
  19. Liang B. T., Hellmich M. R., Neer E. J., Galper J. B. Development of muscarinic cholinergic inhibition of adenylate cyclase in embryonic chick heart. Its relationship to changes in the inhibitory guanine nucleotide regulatory protein. J Biol Chem. 1986 Jul 5;261(19):9011–9021. [PubMed] [Google Scholar]
  20. Liang B. T., Morley J. F. A new cyclic AMP-independent, Gs-mediated stimulatory mechanism via the adenosine A2a receptor in the intact cardiac cell. J Biol Chem. 1996 Aug 2;271(31):18678–18685. doi: 10.1074/jbc.271.31.18678. [DOI] [PubMed] [Google Scholar]
  21. Liu G. S., Richards S. C., Olsson R. A., Mullane K., Walsh R. S., Downey J. M. Evidence that the adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart. Cardiovasc Res. 1994 Jul;28(7):1057–1061. doi: 10.1093/cvr/28.7.1057. [DOI] [PubMed] [Google Scholar]
  22. Marsh J. D., Lachance D., Kim D. Mechanisms of beta-adrenergic receptor regulation in cultured chick heart cells. Role of cytoskeleton function and protein synthesis. Circ Res. 1985 Jul;57(1):171–181. doi: 10.1161/01.res.57.1.171. [DOI] [PubMed] [Google Scholar]
  23. Mestril R., Chi S. H., Sayen M. R., O'Reilly K., Dillmann W. H. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia-induced injury. J Clin Invest. 1994 Feb;93(2):759–767. doi: 10.1172/JCI117030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miura T., Ogawa T., Iwamoto T., Shimamoto K., Iimura O. Dipyridamole potentiates the myocardial infarct size-limiting effect of ischemic preconditioning. Circulation. 1992 Sep;86(3):979–985. doi: 10.1161/01.cir.86.3.979. [DOI] [PubMed] [Google Scholar]
  25. Murry C. E., Jennings R. B., Reimer K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986 Nov;74(5):1124–1136. doi: 10.1161/01.cir.74.5.1124. [DOI] [PubMed] [Google Scholar]
  26. Olafsson B., Forman M. B., Puett D. W., Pou A., Cates C. U., Friesinger G. C., Virmani R. Reduction of reperfusion injury in the canine preparation by intracoronary adenosine: importance of the endothelium and the no-reflow phenomenon. Circulation. 1987 Nov;76(5):1135–1145. doi: 10.1161/01.cir.76.5.1135. [DOI] [PubMed] [Google Scholar]
  27. Schulz R., Rose J., Heusch G. Involvement of activation of ATP-dependent potassium channels in ischemic preconditioning in swine. Am J Physiol. 1994 Oct;267(4 Pt 2):H1341–H1352. doi: 10.1152/ajpheart.1994.267.4.H1341. [DOI] [PubMed] [Google Scholar]
  28. Stimers J. R., Liu S., Lieberman M. Apparent affinity of the Na/K pump for ouabain in cultured chick cardiac myocytes. Effects of Nai and Ko. J Gen Physiol. 1991 Oct;98(4):815–833. doi: 10.1085/jgp.98.4.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tomai F., Crea F., Gaspardone A., Versaci F., De Paulis R., Penta de Peppo A., Chiariello L., Gioffrè P. A. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation. 1994 Aug;90(2):700–705. doi: 10.1161/01.cir.90.2.700. [DOI] [PubMed] [Google Scholar]
  30. Van Wylen D. G. Effect of ischemic preconditioning on interstitial purine metabolite and lactate accumulation during myocardial ischemia. Circulation. 1994 May;89(5):2283–2289. doi: 10.1161/01.cir.89.5.2283. [DOI] [PubMed] [Google Scholar]
  31. Webster K. A., Discher D. J., Bishopric N. H. Cardioprotection in an in vitro model of hypoxic preconditioning. J Mol Cell Cardiol. 1995 Jan;27(1):453–458. doi: 10.1016/s0022-2828(08)80041-7. [DOI] [PubMed] [Google Scholar]
  32. Wyatt D. A., Ely S. W., Lasley R. D., Walsh R., Mainwaring R., Berne R. M., Mentzer R. M., Jr Purine-enriched asanguineous cardioplegia retards adenosine triphosphate degradation during ischemia and improves postischemic ventricular function. J Thorac Cardiovasc Surg. 1989 May;97(5):771–778. [PubMed] [Google Scholar]
  33. Xu H., Miller J., Liang B. T. High-efficiency gene transfer into cardiac myocytes. Nucleic Acids Res. 1992 Dec 11;20(23):6425–6426. doi: 10.1093/nar/20.23.6425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yamane R., Nakamura T., Matsuura E., Ishige H., Fujimoto M. A simple and sensitive radioimmunoassay for adenosine. J Immunoassay. 1991;12(4):501–519. doi: 10.1080/01971529108053277. [DOI] [PubMed] [Google Scholar]
  35. Yao Z., Gross G. J. A comparison of adenosine-induced cardioprotection and ischemic preconditioning in dogs. Efficacy, time course, and role of KATP channels. Circulation. 1994 Mar;89(3):1229–1236. doi: 10.1161/01.cir.89.3.1229. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES