Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Oct 15;98(8):1788–1793. doi: 10.1172/JCI118978

Requirement for increased IL-10 in the development of B-1 lymphoproliferative disease in a murine model of CLL.

S Ramachandra 1, R A Metcalf 1, T Fredrickson 1, G E Marti 1, E Raveche 1
PMCID: PMC507617  PMID: 8878429

Abstract

Malignant B-1 cells derived from NZB mice, a murine model of spontaneous autoimmunity and B cell lymphoproliferative disease, produce significantly higher levels of IL-10 mRNA than normal B-1 or B cells. IL-10 may act as an autocrine growth factor for the expansion of malignant B-1 cells. In order to determine if elevated endogenous production of IL-10 was a required element for the malignant transformation of B-1 cells in NZB mice, backcross animals were studied for the linkage between elevated IL-10 expression and the presence of lymphoid malignancy. The phenotypes of aged (NZB x DBA/2)F1 x NZB animals were determined and a strong correlation was found between the elevated levels of IL-10 mRNA and the development of B-1 malignant clones. In contrast, an increased level of IL-10 message was not associated with elevated serum IgM or the presence of anemia or reticulocytosis which is mainly seen in response to autoantibody production. These results indicate that, at least in NZB, the autoimmunity and lymphoproliferation phenotypes are not linked genetically. IL-10 may enhance proliferation and the development of B-1 cell malignancy rather than antibody production by the B-1 cell subpopulation. Thus, IL-10 plays an important role in B-1 malignancies, and downregulation of IL-10 could be a likely site for intervention in B cell malignancies.

Full Text

The Full Text of this article is available as a PDF (365.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benjamin D., Knobloch T. J., Dayton M. A. Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt's lymphoma constitutively secrete large quantities of interleukin-10. Blood. 1992 Sep 1;80(5):1289–1298. [PubMed] [Google Scholar]
  2. Bost K. L., Bieligk S. C., Jaffe B. M. Lymphokine mRNA expression by transplantable murine B lymphocytic malignancies. Tumor-derived IL-10 as a possible mechanism for modulating the anti-tumor response. J Immunol. 1995 Jan 15;154(2):718–729. [PubMed] [Google Scholar]
  3. Cortes J. E., Talpaz M., Cabanillas F., Seymour J. F., Kurzrock R. Serum levels of interleukin-10 in patients with diffuse large cell lymphoma: lack of correlation with prognosis. Blood. 1995 May 1;85(9):2516–2520. [PubMed] [Google Scholar]
  4. Dang A. M., Balasubramanyam M., Garcia Z., Raveche E., Gardner J. P. Altered calcium signal transduction in B-1 malignant cells. Immunol Cell Biol. 1995 Dec;73(6):511–520. doi: 10.1038/icb.1995.81. [DOI] [PubMed] [Google Scholar]
  5. Drake C. G., Rozzo S. J., Hirschfeld H. F., Smarnworawong N. P., Palmer E., Kotzin B. L. Analysis of the New Zealand Black contribution to lupus-like renal disease. Multiple genes that operate in a threshold manner. J Immunol. 1995 Mar 1;154(5):2441–2447. [PubMed] [Google Scholar]
  6. Finke J., Ternes P., Lange W., Mertelsmann R., Dölken G. Expression of interleukin 10 in B lymphocytes of different origin. Leukemia. 1993 Nov;7(11):1852–1857. [PubMed] [Google Scholar]
  7. Fluckiger A. C., Garrone P., Durand I., Galizzi J. P., Banchereau J. Interleukin 10 (IL-10) upregulates functional high affinity IL-2 receptors on normal and leukemic B lymphocytes. J Exp Med. 1993 Nov 1;178(5):1473–1481. doi: 10.1084/jem.178.5.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ishida H., Muchamuel T., Sakaguchi S., Andrade S., Menon S., Howard M. Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice. J Exp Med. 1994 Jan 1;179(1):305–310. doi: 10.1084/jem.179.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Knauf W. U., Ehlers B., Bisson S., Thiel E. Serum levels of interleukin-10 in B-cell chronic lymphocytic leukemia. Blood. 1995 Dec 1;86(11):4382–4383. [PubMed] [Google Scholar]
  10. Kono D. H., Burlingame R. W., Owens D. G., Kuramochi A., Balderas R. S., Balomenos D., Theofilopoulos A. N. Lupus susceptibility loci in New Zealand mice. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10168–10172. doi: 10.1073/pnas.91.21.10168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kühn R., Löhler J., Rennick D., Rajewsky K., Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993 Oct 22;75(2):263–274. doi: 10.1016/0092-8674(93)80068-p. [DOI] [PubMed] [Google Scholar]
  12. Masood R., Zhang Y., Bond M. W., Scadden D. T., Moudgil T., Law R. E., Kaplan M. H., Jung B., Espina B. M., Lunardi-Iskandar Y. Interleukin-10 is an autocrine growth factor for acquired immunodeficiency syndrome-related B-cell lymphoma. Blood. 1995 Jun 15;85(12):3423–3430. [PubMed] [Google Scholar]
  13. Mercolino T. J., Herndier B., Nolan T. J., McGrath M. S. Large-cell "mixed-phenotype" lymphoma in AIDS. Identification of a CD5-expressing subset of B-cell non-Hodgkin's lymphoma. Ann N Y Acad Sci. 1992 May 4;651:409–421. doi: 10.1111/j.1749-6632.1992.tb24641.x. [DOI] [PubMed] [Google Scholar]
  14. Mignon-Godefroy K., Rott O., Brazillet M. P., Charreire J. Curative and protective effects of IL-10 in experimental autoimmune thyroiditis (EAT). Evidence for IL-10-enhanced cell death in EAT. J Immunol. 1995 Jun 15;154(12):6634–6643. [PubMed] [Google Scholar]
  15. Miyazaki I., Cheung R. K., Dosch H. M. Viral interleukin 10 is critical for the induction of B cell growth transformation by Epstein-Barr virus. J Exp Med. 1993 Aug 1;178(2):439–447. doi: 10.1084/jem.178.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Morel L., Rudofsky U. H., Longmate J. A., Schiffenbauer J., Wakeland E. K. Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunity. 1994 Jun;1(3):219–229. doi: 10.1016/1074-7613(94)90100-7. [DOI] [PubMed] [Google Scholar]
  17. Neurath M. F., Stüber E. R., Strober W. BSAP: a key regulator of B-cell development and differentiation. Immunol Today. 1995 Dec;16(12):564–569. doi: 10.1016/0167-5699(95)80078-6. [DOI] [PubMed] [Google Scholar]
  18. Ng V. L., Hurt M. H., Herndier B. G., McGrath M. S. VH gene use by CD5+ AIDS-associated B-cell lymphoproliferations. Ann N Y Acad Sci. 1995 Sep 29;764:507–508. doi: 10.1111/j.1749-6632.1995.tb55874.x. [DOI] [PubMed] [Google Scholar]
  19. O'Garra A., Chang R., Go N., Hastings R., Haughton G., Howard M. Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur J Immunol. 1992 Mar;22(3):711–717. doi: 10.1002/eji.1830220314. [DOI] [PubMed] [Google Scholar]
  20. Okamoto H., Nishimura H., Shinozaki A., Zhang D., Hirose S., Shirai T. H-2z homozygous New Zealand mice as a model for B-cell chronic lymphocytic leukemia: elevated bcl-2 expression in CD5 B cells at premalignant and malignant stages. Jpn J Cancer Res. 1993 Dec;84(12):1273–1278. doi: 10.1111/j.1349-7006.1993.tb02834.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Panayiotidis P., Ganeshaguru K., Foroni L., Hoffbrand A. V. Expression and function of the FAS antigen in B chronic lymphocytic leukemia and hairy cell leukemia. Leukemia. 1995 Jul;9(7):1227–1232. [PubMed] [Google Scholar]
  22. Peng B., Mehta N. H., Fernandes H., Chou C. C., Raveché E. Growth inhibition of malignant CD5+B (B-1) cells by antisense IL-10 oligonucleotide. Leuk Res. 1995 Mar;19(3):159–167. doi: 10.1016/0145-2126(94)00129-x. [DOI] [PubMed] [Google Scholar]
  23. Phillips J. A., Mehta K., Fernandez C., Raveché E. S. The NZB mouse as a model for chronic lymphocytic leukemia. Cancer Res. 1992 Jan 15;52(2):437–443. [PubMed] [Google Scholar]
  24. Ranheim E. A., Cantwell M. J., Kipps T. J. Expression of CD27 and its ligand, CD70, on chronic lymphocytic leukemia B cells. Blood. 1995 Jun 15;85(12):3556–3565. [PubMed] [Google Scholar]
  25. Raveche E. S., Novotny E. A., Hansen C. T., Tjio J. H., Steinberg A. D. Genetic studies in NZB mice. V. Recombinant inbred lines demonstrate that separate genes control autoimmune phenotype. J Exp Med. 1981 May 1;153(5):1187–1197. doi: 10.1084/jem.153.5.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Raveché E. S., Phillips J., Mahboudi F., Dang A., Fernandes H., Ramachandra S., Lin T., Peng B. Regulatory aspects of clonally expanded B-1 (CD5+ B) cells. Int J Clin Lab Res. 1992;22(4):220–234. doi: 10.1007/BF02591428. [DOI] [PubMed] [Google Scholar]
  27. Raveché E. S., Steinberg A. D., Klassen L. W., Tjio J. H. Genetic studies in NZB mice. I. Spontaneous autoantibody production. J Exp Med. 1978 May 1;147(5):1487–1502. doi: 10.1084/jem.147.5.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Raveché E. S., Tjio J. H., Steinberg A. D. Genetic studies in NZB mice. II. Hyperdiploidy in the spleen of NZB mice and their hybrids. Cytogenet Cell Genet. 1979;23(3):182–193. doi: 10.1159/000131324. [DOI] [PubMed] [Google Scholar]
  29. Rousset F., Garcia E., Defrance T., Péronne C., Vezzio N., Hsu D. H., Kastelein R., Moore K. W., Banchereau J. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1890–1893. doi: 10.1073/pnas.89.5.1890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rozman C., Montserrat E. Chronic lymphocytic leukemia. N Engl J Med. 1995 Oct 19;333(16):1052–1057. doi: 10.1056/NEJM199510193331606. [DOI] [PubMed] [Google Scholar]
  31. Sjöberg J., Aguilar-Santelises M., Sjögren A. M., Pisa E. K., Ljungdahl A., Björkholm M., Jondal M., Mellstedt H., Pisa P. Interleukin-10 mRNA expression in B-cell chronic lymphocytic leukaemia inversely correlates with progression of disease. Br J Haematol. 1996 Feb;92(2):393–400. doi: 10.1046/j.1365-2141.1996.00358.x. [DOI] [PubMed] [Google Scholar]
  32. Stall A. M., Fariñas M. C., Tarlinton D. M., Lalor P. A., Herzenberg L. A., Strober S., Herzenberg L. A. Ly-1 B-cell clones similar to human chronic lymphocytic leukemias routinely develop in older normal mice and young autoimmune (New Zealand Black-related) animals. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7312–7316. doi: 10.1073/pnas.85.19.7312. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES