Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Oct 15;98(8):1835–1842. doi: 10.1172/JCI118984

Demonstration of an osteoblast defect in two cases of human malignant osteopetrosis. Correction of the phenotype after bone marrow transplant.

D Lajeunesse 1, L Busque 1, P Ménard 1, M G Brunette 1, Y Bonny 1
PMCID: PMC507623  PMID: 8878435

Abstract

Osteopetrosis is an inherited disorder characterized by bone sclerosis due to reduced bone resorption. Here we report that human osteopetrotic osteoblast-like (Ob) cells express a defective phenotype in primary cultures in vitro, and that bone marrow transplant (BMT) corrects osteoblast function. DNA analysis at polymorphic short-tandem repeat loci from donor, recipient, and primary Ob-like cells pre-BMT and 2 yr post-BMT revealed that Ob were still of recipient origin post-BMT. Osteopetrotic Ob-like cells obtained pre-BMT showed normal and abnormal 1,25(OH)2D3-induced alkaline phosphatase (ALPase) and osteocalcin production, respectively, and failed to produce macrophage colony-stimulating factor (M-CSF) in response to IL-1a and TNF-alpha. These parameters were all normalized in primary Ob-like cells prepared 2 yr post-BMT. X-linked clonality analysis at the human androgen receptor (HUMARA) locus revealed that osteoblasts showed a polyclonal and an oligoclonal derivation pre- and post-BMT respectively, indicating that a limited number of progenitor reconstituted this population. Because osteoblasts were still of recipient origin post-BMT, this suggests that functional osteoclasts, due to the replacement of hematopoeitic cells, provided a local microenvironment in vivo triggering the differentiation and/or recruitment of a limited number of functional osteoblasts.

Full Text

The Full Text of this article is available as a PDF (262.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. C., Zoghbi H. Y., Moseley A. B., Rosenblatt H. M., Belmont J. W. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet. 1992 Dec;51(6):1229–1239. [PMC free article] [PubMed] [Google Scholar]
  2. Ashton B. A., Allen T. D., Howlett C. R., Eaglesom C. C., Hattori A., Owen M. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop Relat Res. 1980 Sep;(151):294–307. [PubMed] [Google Scholar]
  3. Bab I., Ashton B. A., Gazit D., Marx G., Williamson M. C., Owen M. E. Kinetics and differentiation of marrow stromal cells in diffusion chambers in vivo. J Cell Sci. 1986 Aug;84:139–151. doi: 10.1242/jcs.84.1.139. [DOI] [PubMed] [Google Scholar]
  4. Benayahu D., Kletter Y., Zipori D., Wientroub S. Bone marrow-derived stromal cell line expressing osteoblastic phenotype in vitro and osteogenic capacity in vivo. J Cell Physiol. 1989 Jul;140(1):1–7. doi: 10.1002/jcp.1041400102. [DOI] [PubMed] [Google Scholar]
  5. Braidman I. P., Anderson D. C. Role of bone matrix in osteoclast recruitment in cultured fetal rat calvariae. J Bone Miner Res. 1993 Feb;8(2):231–238. doi: 10.1002/jbmr.5650080214. [DOI] [PubMed] [Google Scholar]
  6. Coccia P. F., Krivit W., Cervenka J., Clawson C., Kersey J. H., Kim T. H., Nesbit M. E., Ramsay N. K., Warkentin P. I., Teitelbaum S. L. Successful bone-marrow transplantation for infantile malignant osteopetrosis. N Engl J Med. 1980 Mar 27;302(13):701–708. doi: 10.1056/NEJM198003273021301. [DOI] [PubMed] [Google Scholar]
  7. Cournot G., Petrovic M., Trubert C. L., Cormier C., Girault D., Fischer A., Garabedian M. Cultured circulating mononuclear cells from osteopetrotic infants express the osteoclast-associated vitronectin receptor and form multinucleated cells in response to 1,25-dihydroxyvitamin D3. J Bone Miner Res. 1993 Jan;8(1):61–70. doi: 10.1002/jbmr.5650080109. [DOI] [PubMed] [Google Scholar]
  8. Cournot G., Trubert-Thil C. L., Petrovic M., Boyle A., Cormier C., Girault D., Fischer A., Garabedian M. Mineral metabolism in infants with malignant osteopetrosis: heterogeneity in plasma 1,25-dihydroxyvitamin D levels and bone histology. J Bone Miner Res. 1992 Jan;7(1):1–10. doi: 10.1002/jbmr.5650070103. [DOI] [PubMed] [Google Scholar]
  9. Elford P. R., Felix R., Cecchini M., Trechsel U., Fleisch H. Murine osteoblastlike cells and the osteogenic cell MC3T3-E1 release a macrophage colony-stimulating activity in culture. Calcif Tissue Int. 1987 Sep;41(3):151–156. doi: 10.1007/BF02563795. [DOI] [PubMed] [Google Scholar]
  10. Felix R., Cecchini M. G., Hofstetter W., Elford P. R., Stutzer A., Fleisch H. Impairment of macrophage colony-stimulating factor production and lack of resident bone marrow macrophages in the osteopetrotic op/op mouse. J Bone Miner Res. 1990 Jul;5(7):781–789. doi: 10.1002/jbmr.5650050716. [DOI] [PubMed] [Google Scholar]
  11. Fischer A. Bone marrow transplantation in immunodeficiency and osteopetrosis. Bone Marrow Transplant. 1989 Dec;4 (Suppl 4):12–14. [PubMed] [Google Scholar]
  12. Fischer A., Griscelli C., Friedrich W., Kubanek B., Levinsky R., Morgan G., Vossen J., Wagemaker G., Landais P. Bone-marrow transplantation for immunodeficiencies and osteopetrosis: European survey, 1968-1985. Lancet. 1986 Nov 8;2(8515):1080–1084. doi: 10.1016/s0140-6736(86)90477-0. [DOI] [PubMed] [Google Scholar]
  13. Kaplan F. S., August C. S., Fallon M. D., Dalinka M., Axel L., Haddad J. G. Successful treatment of infantile malignant osteopetrosis by bone-marrow transplantation. A case report. J Bone Joint Surg Am. 1988 Apr;70(4):617–623. [PubMed] [Google Scholar]
  14. Key L., Carnes D., Cole S., Holtrop M., Bar-Shavit Z., Shapiro F., Arceci R., Steinberg J., Gundberg C., Kahn A. Treatment of congenital osteopetrosis with high-dose calcitriol. N Engl J Med. 1984 Feb 16;310(7):409–415. doi: 10.1056/NEJM198402163100701. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lajeunesse D., Frondoza C., Schoffield B., Sacktor B. Osteocalcin secretion by the human osteosarcoma cell line MG-63. J Bone Miner Res. 1990 Sep;5(9):915–922. doi: 10.1002/jbmr.5650050904. [DOI] [PubMed] [Google Scholar]
  17. Lajeunesse D., Kiebzak G. M., Frondoza C., Sacktor B. Regulation of osteocalcin secretion by human primary bone cells and by the human osteosarcoma cell line MG-63. Bone Miner. 1991 Sep;14(3):237–250. doi: 10.1016/0169-6009(91)90025-u. [DOI] [PubMed] [Google Scholar]
  18. Lenhard S., Popoff S. N., Marks S. C., Jr Defective osteoclast differentiation and function in the osteopetrotic (os) rabbit. Am J Anat. 1990 Aug;188(4):438–444. doi: 10.1002/aja.1001880412. [DOI] [PubMed] [Google Scholar]
  19. Lian J. B., Marks S. C., Jr Osteopetrosis in the rat: coexistence of reductions in osteocalcin and bone resorption. Endocrinology. 1990 Feb;126(2):955–962. doi: 10.1210/endo-126-2-955. [DOI] [PubMed] [Google Scholar]
  20. Luria E. A., Owen M. E., Friedenstein A. J., Morris J. F., Kuznetsow S. A. Bone formation in organ cultures of bone marrow. Cell Tissue Res. 1987 May;248(2):449–454. doi: 10.1007/BF00218212. [DOI] [PubMed] [Google Scholar]
  21. Mardon H. J., Bee J., von der Mark K., Owen M. E. Development of osteogenic tissue in diffusion chambers from early precursor cells in bone marrow of adult rats. Cell Tissue Res. 1987 Oct;250(1):157–165. doi: 10.1007/BF00214667. [DOI] [PubMed] [Google Scholar]
  22. Marks S. C., Jr, MacKay C. A., Seifert M. F. The osteopetrotic rabbit: skeletal cytology and ultrastructure. Am J Anat. 1987 Mar;178(3):300–307. doi: 10.1002/aja.1001780310. [DOI] [PubMed] [Google Scholar]
  23. Marks S. C., Jr, Mackowiak S., Shaloub V., Lian J. B., Stein G. S. Proliferation and differentiation of osteoblasts in osteopetrotic rats: modification in expression of genes encoding cell growth and extracellular matrix proteins. Connect Tissue Res. 1989;21(1-4):107–116. doi: 10.3109/03008208909050001. [DOI] [PubMed] [Google Scholar]
  24. Marks S. C., Jr, Seifert M. F., McGuire J. L. Congenitally osteopetrotic (oplop) mice are not cured by transplants of spleen or bone marrow cells from normal littermates. Metab Bone Dis Relat Res. 1984;5(4):183–186. doi: 10.1016/0221-8747(84)90027-4. [DOI] [PubMed] [Google Scholar]
  25. Milhaud G., Labat M. L., Graf B., Juster M., Balmain N., Moutier R., Toyama K. Démonstration cinétique, radiographique et histologique de la guérison de l'ostéopétrose congéitale du rat. C R Acad Sci Hebd Seances Acad Sci D. 1975 Jun 2;280(21):2485–2488. [PubMed] [Google Scholar]
  26. Popoff S. N., Marks S. C., Jr Relationship of abnormalities in dental and skeletal development in the osteopetrotic (os) rabbit. J Oral Pathol Med. 1990 Jan;19(1):5–12. doi: 10.1111/j.1600-0714.1990.tb00774.x. [DOI] [PubMed] [Google Scholar]
  27. Reeves J., Arnaud S., Gordon S., Subryan B., Block M., Huffer W., Arnaud C., Mundy G., Haussler M. The pathogenesis of infantile malignant osteopetrosis: bone mineral metabolism and complications in five infants. Metab Bone Dis Relat Res. 1981;3(2):135–142. doi: 10.1016/0221-8747(81)90032-1. [DOI] [PubMed] [Google Scholar]
  28. Sato K., Fujii Y., Asano S., Ohtsuki T., Kawakami M., Kasono K., Tsushima T., Shizume K. Recombinant human interleukin 1 alpha and beta stimulate mouse osteoblast-like cells (MC3T3-E1) to produce macrophage-colony stimulating activity and prostaglandin E2. Biochem Biophys Res Commun. 1986 Nov 26;141(1):285–291. doi: 10.1016/s0006-291x(86)80366-7. [DOI] [PubMed] [Google Scholar]
  29. Sato K., Kasono K., Fujii Y., Kawakami M., Tsushima T., Shizume K. Tumor necrosis factor type alpha (cachectin) stimulates mouse osteoblast-like cells (MC3T3-E1) to produce macrophage-colony stimulating activity and prostaglandin E2. Biochem Biophys Res Commun. 1987 May 29;145(1):323–329. doi: 10.1016/0006-291x(87)91324-6. [DOI] [PubMed] [Google Scholar]
  30. Shalhoub V., Jackson M. E., Lian J. B., Stein G. S., Marks S. C., Jr Gene expression during skeletal development in three osteopetrotic rat mutations. Evidence for osteoblast abnormalities. J Biol Chem. 1991 May 25;266(15):9847–9856. [PubMed] [Google Scholar]
  31. Sieff C. A., Chessells J. M., Levinsky R. J., Pritchard J., Rogers D. W., Casey A., Muller K., Hall C. M. Allogeneic bone-marrow transplantation in infantile malignant osteopetrosis. Lancet. 1983 Feb 26;1(8322):437–441. doi: 10.1016/s0140-6736(83)91438-1. [DOI] [PubMed] [Google Scholar]
  32. Sly W. S., Hewett-Emmett D., Whyte M. P., Yu Y. S., Tashian R. E. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A. 1983 May;80(9):2752–2756. doi: 10.1073/pnas.80.9.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stanley E. R. Action of the colony-stimulating factor, CSF-1. Ciba Found Symp. 1986;118:29–41. doi: 10.1002/9780470720998.ch3. [DOI] [PubMed] [Google Scholar]
  34. Sundquist K. T., Jackson M. E., Hermey D. C., Marks S. C., Jr Osteoblasts from the toothless (osteopetrotic) mutation in the rat are unable to direct bone resorption by normal osteoclasts in response to 1,25-dihydroxyvitamin D. Tissue Cell. 1995 Oct;27(5):569–574. doi: 10.1016/s0040-8166(05)80066-7. [DOI] [PubMed] [Google Scholar]
  35. Walker D. G. Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science. 1975 Nov 21;190(4216):784–785. doi: 10.1126/science.1105786. [DOI] [PubMed] [Google Scholar]
  36. Wiktor-Jedrzejczak W. W., Ahmed A., Szczylik C., Skelly R. R. Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation. J Exp Med. 1982 Nov 1;156(5):1516–1527. doi: 10.1084/jem.156.5.1516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Willman C. L., Busque L., Griffith B. B., Favara B. E., McClain K. L., Duncan M. H., Gilliland D. G. Langerhans'-cell histiocytosis (histiocytosis X)--a clonal proliferative disease. N Engl J Med. 1994 Jul 21;331(3):154–160. doi: 10.1056/NEJM199407213310303. [DOI] [PubMed] [Google Scholar]
  38. Wisner-Lynch L. A., Shalhoub V., Marks S. C., Jr Administration of colony stimulating factor-1 to toothless osteopetrotic rats normalizes osteoblast, but not osteoclast, gene expression. Bone. 1995 Jun;16(6):611–618. doi: 10.1016/8756-3282(95)00114-s. [DOI] [PubMed] [Google Scholar]
  39. Yoshida H., Hayashi S., Kunisada T., Ogawa M., Nishikawa S., Okamura H., Sudo T., Shultz L. D., Nishikawa S. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990 May 31;345(6274):442–444. doi: 10.1038/345442a0. [DOI] [PubMed] [Google Scholar]
  40. Zerwekh J. E., Marks S. C., Jr, McGuire J. L. Elevated serum 1,25-dihydroxyvitamin D in osteopetrotic mutations in three species. Bone Miner. 1987 May;2(3):193–199. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES