Abstract
Deficiency in mitochondrial aldehyde dehydrogenase (ALDH2), a tetrameric enzyme, results from inheriting one or two ALDH2*2 alleles. This allele encodes a protein subunit with a lysine for glutamate substitution at position 487 and is dominant over the wild-type allele, ALDH2*1. The ALDH2*2-encoded subunit (ALDH2K) reduces the activity of ALDH2 enzyme in cell lines expressing the wild-type subunit (ALDH2E). In addition to this effect on the enzyme activity, we now report that ALDH2*2 heterozygotes had lower levels of ALDH2 immunoreactive protein in autopsy liver samples. The half-lives of ALDH2 protein in HeLa cell lines expressing ALDH2*1, ALDH2*2, or both were determined by the rate of loss of immunoreactive protein after inhibition of protein synthesis with puromycin and by pulse-chase experiments. By either measure, ALDH2E enzyme was very stable, with a half-life of at least 22 h. ALDH2K enzyme had an enzyme half-life of only 14 h. In cells expressing both subunits, most of the subunits assemble as heterotetramers, and these enzymes had a half-life of 13 h. Thus, the effect of ALDH2K on enzyme turnover is dominant. These studies indicate that the ALDH2*2 allele exerts its dominant effect both by interfering with the catalytic activity of the enzyme and by increasing its turnover. This represents the first example of a dominantly acting allele with this effect on a mitochondrial enzyme's turnover.
Full Text
The Full Text of this article is available as a PDF (228.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borén J., Graham L., Wettesten M., Scott J., White A., Olofsson S. O. The assembly and secretion of ApoB 100-containing lipoproteins in Hep G2 cells. ApoB 100 is cotranslationally integrated into lipoproteins. J Biol Chem. 1992 May 15;267(14):9858–9867. [PubMed] [Google Scholar]
- Cheng M. Y., Hartl F. U., Martin J., Pollock R. A., Kalousek F., Neupert W., Hallberg E. M., Hallberg R. L., Horwich A. L. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature. 1989 Feb 16;337(6208):620–625. doi: 10.1038/337620a0. [DOI] [PubMed] [Google Scholar]
- Crabb D. W., Edenberg H. J., Bosron W. F., Li T. K. Genotypes for aldehyde dehydrogenase deficiency and alcohol sensitivity. The inactive ALDH2(2) allele is dominant. J Clin Invest. 1989 Jan;83(1):314–316. doi: 10.1172/JCI113875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cyr D. M., Langer T., Douglas M. G. DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci. 1994 Apr;19(4):176–181. doi: 10.1016/0968-0004(94)90281-x. [DOI] [PubMed] [Google Scholar]
- Enomoto N., Takase S., Yasuhara M., Takada A. Acetaldehyde metabolism in different aldehyde dehydrogenase-2 genotypes. Alcohol Clin Exp Res. 1991 Feb;15(1):141–144. doi: 10.1111/j.1530-0277.1991.tb00532.x. [DOI] [PubMed] [Google Scholar]
- Farrés J., Wang X., Takahashi K., Cunningham S. J., Wang T. T., Weiner H. Effects of changing glutamate 487 to lysine in rat and human liver mitochondrial aldehyde dehydrogenase. A model to study human (Oriental type) class 2 aldehyde dehydrogenase. J Biol Chem. 1994 May 13;269(19):13854–13860. [PubMed] [Google Scholar]
- Ferencz-Biro K., Pietruszko R. Human aldehyde dehydrogenase: catalytic activity in oriental liver. Biochem Biophys Res Commun. 1984 Jan 13;118(1):97–102. doi: 10.1016/0006-291x(84)91072-6. [DOI] [PubMed] [Google Scholar]
- Fritz P. J., Vesell E. S., White E. L., Pruitt K. M. The roles of synthesis and degradation in determining tissue concentrations of lactate dehydrogenase-5. Proc Natl Acad Sci U S A. 1969 Feb;62(2):558–565. doi: 10.1073/pnas.62.2.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
- Goedde H. W., Agarwal D. P., Harada S., Meier-Tackmann D., Ruofu D., Bienzle U., Kroeger A., Hussein L. Population genetic studies on aldehyde dehydrogenase isozyme deficiency and alcohol sensitivity. Am J Hum Genet. 1983 Jul;35(4):769–772. [PMC free article] [PubMed] [Google Scholar]
- Goedde H. W., Singh S., Agarwal D. P., Fritze G., Stapel K., Paik Y. K. Genotyping of mitochondrial aldehyde dehydrogenase in blood samples using allele-specific oligonucleotides: comparison with phenotyping in hair roots. Hum Genet. 1989 Mar;81(4):305–307. doi: 10.1007/BF00283679. [DOI] [PubMed] [Google Scholar]
- Harada S., Agarwal D. P., Goedde H. W., Ishikawa B. Aldehyde dehydrogenase isozyme variation and alcoholism in Japan. Pharmacol Biochem Behav. 1983;18 (Suppl 1):151–153. doi: 10.1016/0091-3057(83)90163-6. [DOI] [PubMed] [Google Scholar]
- Harada S., Agarwal D. P., Goedde H. W., Tagaki S., Ishikawa B. Possible protective role against alcoholism for aldehyde dehydrogenase isozyme deficiency in Japan. Lancet. 1982 Oct 9;2(8302):827–827. doi: 10.1016/s0140-6736(82)92722-2. [DOI] [PubMed] [Google Scholar]
- Hempel J., Kaiser R., Jörnvall H. Human liver mitochondrial aldehyde dehydrogenase: a C-terminal segment positions and defines the structure corresponding to the one reported to differ in the Oriental enzyme variant. FEBS Lett. 1984 Aug 6;173(2):367–373. doi: 10.1016/0014-5793(84)80807-8. [DOI] [PubMed] [Google Scholar]
- Impraim C., Wang G., Yoshida A. Structural mutation in a major human aldehyde dehydrogenase gene results in loss of enzyme activity. Am J Hum Genet. 1982 Nov;34(6):837–841. [PMC free article] [PubMed] [Google Scholar]
- Nagao M., Tanaka K. FAD-dependent regulation of transcription, translation, post-translational processing, and post-processing stability of various mitochondrial acyl-CoA dehydrogenases and of electron transfer flavoprotein and the site of holoenzyme formation. J Biol Chem. 1992 Sep 5;267(25):17925–17932. [PubMed] [Google Scholar]
- Naito E., Indo Y., Tanaka K. Identification of two variant short chain acyl-coenzyme A dehydrogenase alleles, each containing a different point mutation in a patient with short chain acyl-coenzyme A dehydrogenase deficiency. J Clin Invest. 1990 May;85(5):1575–1582. doi: 10.1172/JCI114607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naito E., Indo Y., Tanaka K. Short chain acyl-coenzyme A dehydrogenase (SCAD) deficiency. Immunochemical demonstration of molecular heterogeneity due to variant SCAD with differing stability. J Clin Invest. 1989 Nov;84(5):1671–1674. doi: 10.1172/JCI114346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rowley N., Prip-Buus C., Westermann B., Brown C., Schwarz E., Barrell B., Neupert W. Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell. 1994 Apr 22;77(2):249–259. doi: 10.1016/0092-8674(94)90317-4. [DOI] [PubMed] [Google Scholar]
- Saijo T., Welch W. J., Tanaka K. Intramitochondrial folding and assembly of medium-chain acyl-CoA dehydrogenase (MCAD). Demonstration of impaired transfer of K304E-variant MCAD from its complex with hsp60 to the native tetramer. J Biol Chem. 1994 Feb 11;269(6):4401–4408. [PubMed] [Google Scholar]
- Sastre L., Kishimoto T. K., Gee C., Roberts T., Springer T. A. The mouse leukocyte adhesion proteins Mac-1 and LFA-1: studies on mRNA translation and protein glycosylation with emphasis on Mac-1. J Immunol. 1986 Aug 1;137(3):1060–1065. [PubMed] [Google Scholar]
- Thomasson H. R., Edenberg H. J., Crabb D. W., Mai X. L., Jerome R. E., Li T. K., Wang S. P., Lin Y. T., Lu R. B., Yin S. J. Alcohol and aldehyde dehydrogenase genotypes and alcoholism in Chinese men. Am J Hum Genet. 1991 Apr;48(4):677–681. [PMC free article] [PubMed] [Google Scholar]
- Tischler M. E., Friedrichs D., Coll K., Williamson J. R. Pyridine nucleotide distributions and enzyme mass action ratios in hepatocytes from fed and starved rats. Arch Biochem Biophys. 1977 Nov;184(1):222–236. doi: 10.1016/0003-9861(77)90346-0. [DOI] [PubMed] [Google Scholar]
- Wagner I., Arlt H., van Dyck L., Langer T., Neupert W. Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J. 1994 Nov 1;13(21):5135–5145. doi: 10.1002/j.1460-2075.1994.tb06843.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiao Q., Weiner H., Johnston T., Crabb D. W. The aldehyde dehydrogenase ALDH2*2 allele exhibits dominance over ALDH2*1 in transduced HeLa cells. J Clin Invest. 1995 Nov;96(5):2180–2186. doi: 10.1172/JCI118272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida A., Huang I. Y., Ikawa M. Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci U S A. 1984 Jan;81(1):258–261. doi: 10.1073/pnas.81.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida A., Wang G., Davé V. Determination of genotypes of human aldehyde dehydrogenase ALDH2 locus. Am J Hum Genet. 1983 Nov;35(6):1107–1116. [PMC free article] [PubMed] [Google Scholar]
