Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Nov 1;98(9):2042–2049. doi: 10.1172/JCI119009

Bradykinin stimulates NF-kappaB activation and interleukin 1beta gene expression in cultured human fibroblasts.

Z K Pan 1, B L Zuraw 1, C C Lung 1, E R Prossnitz 1, D D Browning 1, R D Ye 1
PMCID: PMC507648  PMID: 8903323

Abstract

Bradykinin (BK), a pluripotent nonameric peptide, is known for its proinflammatory functions in both tissue injury and allergic inflammation of the airway mucosa and submucosa. To understand the mechanisms by which BK serves as an inflammatory mediator, the human lung fibroblast cell line WI-38 was stimulated with BK and the expression of IL-1beta gene was examined. BK at nanomolar concentrations induced a marked increase in immunoreactive IL-1beta, detectable within 2 h in both secreted and cell-associated forms. BK-induced IL-1beta synthesis was inhibited by a B2-type BK receptor antagonist and by treatment of the cells with pertussis toxin, indicating the involvement of a BK receptor that couples to the G(i)/G(o) class of heterotrimeric G proteins. Whereas cycloheximide and actinomycin D both inhibited BK-induced IL-1beta synthesis, results from Northern blot and nuclear run-on assays suggested that BK acted primarily at the transcription level which led to the accumulation of IL-1beta message in stimulated cells. Gel mobility shift assays were used with nuclear extracts from stimulated WI-38 cells to examine the transcription mechanism for BK-induced IL-1beta expression. A DNA binding activity specific for the decameric kappaB enhancer was detected and was found to contain the p50 and p65 subunits of the NF-kappaB/rel protein family. BK-induced NF-kappaB activation correlated with IL-1beta message upregulation with respect to agonist concentration, time course, sensitivity to bacterial toxins, and blockade by the B2 receptor antagonist. After BK stimulation, a significant increase in the activity of chloramphenicol acetyltransferase was observed in WI-38 cells transfected with a reporter plasmid bearing the kappaB enhancers from the IL-1beta gene. Deletion of the kappaB enhancer sequence significantly reduced BK-induced chloramphenicol acetyltransferase activity. These findings suggests a novel function of BK in the activation of NF-kappaB and the induction of cytokine gene expression.

Full Text

The Full Text of this article is available as a PDF (372.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham W. M., Burch R. M., Farmer S. G., Sielczak M. W., Ahmed A., Cortes A. A bradykinin antagonist modifies allergen-induced mediator release and late bronchial responses in sheep. Am Rev Respir Dis. 1991 Apr;143(4 Pt 1):787–796. doi: 10.1164/ajrccm/143.4_Pt_1.787. [DOI] [PubMed] [Google Scholar]
  2. Abraham W. M. The potential role of bradykinin antagonists in the treatment of asthma. Agents Actions Suppl. 1992;38(Pt 3):439–449. [PubMed] [Google Scholar]
  3. Agarwal S., Baran C., Piesco N. P., Quintero J. C., Langkamp H. H., Johns L. P., Chandra C. S. Synthesis of proinflammatory cytokines by human gingival fibroblasts in response to lipopolysaccharides and interleukin-1 beta. J Periodontal Res. 1995 Nov;30(6):382–389. doi: 10.1111/j.1600-0765.1995.tb01291.x. [DOI] [PubMed] [Google Scholar]
  4. Angel J., Audubert F., Bismuth G., Fournier C. IL-1 beta amplifies bradykinin-induced prostaglandin E2 production via a phospholipase D-linked mechanism. J Immunol. 1994 May 15;152(10):5032–5040. [PubMed] [Google Scholar]
  5. Bathon J. M., Manning D. C., Goldman D. W., Towns M. C., Proud D. Characterization of kinin receptors on human synovial cells and upregulation of receptor number by interleukin-1. J Pharmacol Exp Ther. 1992 Jan;260(1):384–392. [PubMed] [Google Scholar]
  6. Bathon J. M., Proud D., Krackow K., Wigley F. M. Preincubation of human synovial cells with IL-1 modulates prostaglandin E2 release in response to bradykinin. J Immunol. 1989 Jul 15;143(2):579–586. [PubMed] [Google Scholar]
  7. Chiao P. J., Miyamoto S., Verma I. M. Autoregulation of I kappa B alpha activity. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):28–32. doi: 10.1073/pnas.91.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Christiansen S. C., Proud D., Sarnoff R. B., Juergens U., Cochrane C. G., Zuraw B. L. Elevation of tissue kallikrein and kinin in the airways of asthmatic subjects after endobronchial allergen challenge. Am Rev Respir Dis. 1992 Apr;145(4 Pt 1):900–905. doi: 10.1164/ajrccm/145.4_Pt_1.900. [DOI] [PubMed] [Google Scholar]
  10. Cogswell J. P., Godlevski M. M., Wisely G. B., Clay W. C., Leesnitzer L. M., Ways J. P., Gray J. G. NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J Immunol. 1994 Jul 15;153(2):712–723. [PubMed] [Google Scholar]
  11. Deblois D., Bouthillier J., Marceau F. Effect of glucocorticoids, monokines and growth factors on the spontaneously developing responses of the rabbit isolated aorta to des-Arg9-bradykinin. Br J Pharmacol. 1988 Apr;93(4):969–977. doi: 10.1111/j.1476-5381.1988.tb11487.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dinarello C. A. Interleukin-1 and interleukin-1 antagonism. Blood. 1991 Apr 15;77(8):1627–1652. [PubMed] [Google Scholar]
  14. Dray A., Perkins M. Bradykinin and inflammatory pain. Trends Neurosci. 1993 Mar;16(3):99–104. doi: 10.1016/0166-2236(93)90133-7. [DOI] [PubMed] [Google Scholar]
  15. Farmer S. G., Burch R. M. Biochemical and molecular pharmacology of kinin receptors. Annu Rev Pharmacol Toxicol. 1992;32:511–536. doi: 10.1146/annurev.pa.32.040192.002455. [DOI] [PubMed] [Google Scholar]
  16. Goldstein R. H., Polgar P. The effect and interaction of bradykinin and prostaglandins on protein and collagen production by lung fibroblasts. J Biol Chem. 1982 Aug 10;257(15):8630–8633. [PubMed] [Google Scholar]
  17. Goldstein R. H., Wall M. Activation of protein formation and cell division by bradykinin and des-Arg9-bradykinin. J Biol Chem. 1984 Jul 25;259(14):9263–9268. [PubMed] [Google Scholar]
  18. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hall J. M. Bradykinin receptors: pharmacological properties and biological roles. Pharmacol Ther. 1992 Nov;56(2):131–190. doi: 10.1016/0163-7258(92)90016-s. [DOI] [PubMed] [Google Scholar]
  20. Henkel T., Machleidt T., Alkalay I., Krönke M., Ben-Neriah Y., Baeuerle P. A. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature. 1993 Sep 9;365(6442):182–185. doi: 10.1038/365182a0. [DOI] [PubMed] [Google Scholar]
  21. Hess J. F., Borkowski J. A., Young G. S., Strader C. D., Ransom R. W. Cloning and pharmacological characterization of a human bradykinin (BK-2) receptor. Biochem Biophys Res Commun. 1992 Apr 15;184(1):260–268. doi: 10.1016/0006-291x(92)91187-u. [DOI] [PubMed] [Google Scholar]
  22. Hong S. L., Levine L. Stimulation of prostaglandin synthesis by bradykinin and thrombin and their mechanisms of action on MC5-5 fibroblasts. J Biol Chem. 1976 Sep 25;251(18):5814–5816. [PubMed] [Google Scholar]
  23. Issandou M., Rozengurt E. Bradykinin transiently activates protein kinase C in Swiss 3T3 cells. Distinction from activation by bombesin and vasopressin. J Biol Chem. 1990 Jul 15;265(20):11890–11896. [PubMed] [Google Scholar]
  24. Kravchenko V. V., Pan Z., Han J., Herbert J. M., Ulevitch R. J., Ye R. D. Platelet-activating factor induces NF-kappa B activation through a G protein-coupled pathway. J Biol Chem. 1995 Jun 23;270(25):14928–14934. doi: 10.1074/jbc.270.25.14928. [DOI] [PubMed] [Google Scholar]
  25. Leeb-Lundberg L. M., Song X. H. Bradykinin and bombesin rapidly stimulate tyrosine phosphorylation of a 120-kDa group of proteins in Swiss 3T3 cells. J Biol Chem. 1991 Apr 25;266(12):7746–7749. [PubMed] [Google Scholar]
  26. Liao J. K., Homcy C. J. The G proteins of the G alpha i and G alpha q family couple the bradykinin receptor to the release of endothelium-derived relaxing factor. J Clin Invest. 1993 Nov;92(5):2168–2172. doi: 10.1172/JCI116818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mari B., Imbert V., Belhacene N., Far D. F., Peyron J. F., Pouysségur J., Van Obberghen-Schilling E., Rossi B., Auberger P. Thrombin and thrombin receptor agonist peptide induce early events of T cell activation and synergize with TCR cross-linking for CD69 expression and interleukin 2 production. J Biol Chem. 1994 Mar 18;269(11):8517–8523. [PubMed] [Google Scholar]
  28. McEachern A. E., Shelton E. R., Bhakta S., Obernolte R., Bach C., Zuppan P., Fujisaki J., Aldrich R. W., Jarnagin K. Expression cloning of a rat B2 bradykinin receptor. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7724–7728. doi: 10.1073/pnas.88.17.7724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Menke J. G., Borkowski J. A., Bierilo K. K., MacNeil T., Derrick A. W., Schneck K. A., Ransom R. W., Strader C. D., Linemeyer D. L., Hess J. F. Expression cloning of a human B1 bradykinin receptor. J Biol Chem. 1994 Aug 26;269(34):21583–21586. [PubMed] [Google Scholar]
  30. Nakajima T., Kitajima I., Shin H., Takasaki I., Shigeta K., Abeyama K., Yamashita Y., Tokioka T., Soejima Y., Maruyama I. Involvement of NF-kappa B activation in thrombin-induced human vascular smooth muscle cell proliferation. Biochem Biophys Res Commun. 1994 Oct 28;204(2):950–958. doi: 10.1006/bbrc.1994.2552. [DOI] [PubMed] [Google Scholar]
  31. Paegelow I., Werner H., Vietinghoff G., Wartner U. Release of cytokines from isolated lung strips by bradykinin. Inflamm Res. 1995 Jul;44(7):306–311. doi: 10.1007/BF02032574. [DOI] [PubMed] [Google Scholar]
  32. Pan Z., Kravchenko V. V., Ye R. D. Platelet-activating factor stimulates transcription of the heparin-binding epidermal growth factor-like growth factor in monocytes. Correlation with an increased kappa B binding activity. J Biol Chem. 1995 Apr 7;270(14):7787–7790. doi: 10.1074/jbc.270.14.7787. [DOI] [PubMed] [Google Scholar]
  33. Phillips E., Conder M. J., Bevan S., McIntyre P., Webb M. Expression of functional bradykinin receptors in Xenopus oocytes. J Neurochem. 1992 Jan;58(1):243–249. doi: 10.1111/j.1471-4159.1992.tb09302.x. [DOI] [PubMed] [Google Scholar]
  34. Proud D., Kaplan A. P. Kinin formation: mechanisms and role in inflammatory disorders. Annu Rev Immunol. 1988;6:49–83. doi: 10.1146/annurev.iy.06.040188.000405. [DOI] [PubMed] [Google Scholar]
  35. Regoli D. C., Marceau F., Lavigne J. Induction of beta 1-receptors for kinins in the rabbit by a bacterial lipopolysaccharide. Eur J Pharmacol. 1981 Apr 24;71(1):105–115. doi: 10.1016/0014-2999(81)90391-5. [DOI] [PubMed] [Google Scholar]
  36. Regoli D., Barabé J. Pharmacology of bradykinin and related kinins. Pharmacol Rev. 1980 Mar;32(1):1–46. [PubMed] [Google Scholar]
  37. Schreck R., Meier B., Männel D. N., Dröge W., Baeuerle P. A. Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J Exp Med. 1992 May 1;175(5):1181–1194. doi: 10.1084/jem.175.5.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sen R., Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986 Aug 29;46(5):705–716. doi: 10.1016/0092-8674(86)90346-6. [DOI] [PubMed] [Google Scholar]
  39. Stewart J. M. The kinin system in inflammation. Agents Actions Suppl. 1993;42:145–157. doi: 10.1007/978-3-0348-7397-0_12. [DOI] [PubMed] [Google Scholar]
  40. Webb M., McIntyre P., Phillips E. B1 and B2 bradykinin receptors encoded by distinct mRNAs. J Neurochem. 1994 Apr;62(4):1247–1253. doi: 10.1046/j.1471-4159.1994.62041247.x. [DOI] [PubMed] [Google Scholar]
  41. Wilk-Blaszczak M. A., Singer W. D., Gutowski S., Sternweis P. C., Belardetti F. The G protein G13 mediates inhibition of voltage-dependent calcium current by bradykinin. Neuron. 1994 Nov;13(5):1215–1224. doi: 10.1016/0896-6273(94)90059-0. [DOI] [PubMed] [Google Scholar]
  42. Yokoyama S., Kimura Y., Taketo M., Black J. A., Ransom B. R., Higashida H. B2 bradykinin receptors in NG108-15 cells: cDNA cloning and functional expression. Biochem Biophys Res Commun. 1994 Apr 15;200(1):634–641. doi: 10.1006/bbrc.1994.1495. [DOI] [PubMed] [Google Scholar]
  43. deBlois D., Bouthillier J., Marceau F. Pulse exposure to protein synthesis inhibitors enhances vascular responses to des-Arg9-bradykinin: possible role of interleukin-1. Br J Pharmacol. 1991 May;103(1):1057–1066. doi: 10.1111/j.1476-5381.1991.tb12300.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES