Abstract
From 1992-93, we screened 18,043 subjects, aged 40-67 yr, and found 67 cases (0.4%) with total plasma homocysteine (tHcy) > or = 40 micromol/liter. Compared to 329 controls, the cases had lower plasma folate and cobalamin levels, lower intake of vitamin supplements, consumed more coffee, and were more frequently smokers. Homozygosity for the C677T mutation in the methylenetetrahydrofolate reductase gene was observed in 73.1% of the cases and 10.2% of the controls. Only seven cases with cobalamin deficiency and one with homocystinuria received specific therapeutic instructions. 2 yr after the screening, 58 subjects were reinvestigated. 41 still had tHcy > 20 micromol/liter, and in 37 of these, intervention with low dose folic acid (0.2 mg/d) was started. Notably, 34 of 37 (92%) had homozygosity for the C677T mutation. Plasma tHcy was reduced in all but two after 7 wk, and became normal within 7 mo in 21 of 37 subjects. Most of the remaining subjects obtained a normal tHcy level with 5 mg/d of folic acid. We conclude that most subjects with hyperhomocysteinemia > or = 40 micromol/liter in the general population have the C677T mutation combined with low folate status. Daily supplement of low dose folic acid will reduce and often normalize their tHcy level.
Full Text
The Full Text of this article is available as a PDF (259.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. H., Stabler S. P., Savage D. G., Lindenbaum J. Metabolic abnormalities in cobalamin (vitamin B12) and folate deficiency. FASEB J. 1993 Nov;7(14):1344–1353. doi: 10.1096/fasebj.7.14.7901104. [DOI] [PubMed] [Google Scholar]
- Bland J. M., Altman D. G. Regression towards the mean. BMJ. 1994 Jun 4;308(6942):1499–1499. doi: 10.1136/bmj.308.6942.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boushey C. J., Beresford S. A., Omenn G. S., Motulsky A. G. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA. 1995 Oct 4;274(13):1049–1057. doi: 10.1001/jama.1995.03530130055028. [DOI] [PubMed] [Google Scholar]
- Brattström L. E., Hultberg B. L., Hardebo J. E. Folic acid responsive postmenopausal homocysteinemia. Metabolism. 1985 Nov;34(11):1073–1077. doi: 10.1016/0026-0495(85)90082-4. [DOI] [PubMed] [Google Scholar]
- Brattström L. E., Israelsson B., Jeppsson J. O., Hultberg B. L. Folic acid--an innocuous means to reduce plasma homocysteine. Scand J Clin Lab Invest. 1988 May;48(3):215–221. doi: 10.3109/00365518809167487. [DOI] [PubMed] [Google Scholar]
- Brattström L., Israelsson B., Norrving B., Bergqvist D., Thörne J., Hultberg B., Hamfelt A. Impaired homocysteine metabolism in early-onset cerebral and peripheral occlusive arterial disease. Effects of pyridoxine and folic acid treatment. Atherosclerosis. 1990 Feb;81(1):51–60. doi: 10.1016/0021-9150(90)90058-q. [DOI] [PubMed] [Google Scholar]
- Engbersen A. M., Franken D. G., Boers G. H., Stevens E. M., Trijbels F. J., Blom H. J. Thermolabile 5,10-methylenetetrahydrofolate reductase as a cause of mild hyperhomocysteinemia. Am J Hum Genet. 1995 Jan;56(1):142–150. [PMC free article] [PubMed] [Google Scholar]
- Finkelstein J. D. Methionine metabolism in mammals. J Nutr Biochem. 1990 May;1(5):228–237. doi: 10.1016/0955-2863(90)90070-2. [DOI] [PubMed] [Google Scholar]
- Fiskerstrand T., Refsum H., Kvalheim G., Ueland P. M. Homocysteine and other thiols in plasma and urine: automated determination and sample stability. Clin Chem. 1993 Feb;39(2):263–271. [PubMed] [Google Scholar]
- Franken D. G., Boers G. H., Blom H. J., Trijbels F. J., Kloppenborg P. W. Treatment of mild hyperhomocysteinemia in vascular disease patients. Arterioscler Thromb. 1994 Mar;14(3):465–470. doi: 10.1161/01.atv.14.3.465. [DOI] [PubMed] [Google Scholar]
- Frosst P., Blom H. J., Milos R., Goyette P., Sheppard C. A., Matthews R. G., Boers G. J., den Heijer M., Kluijtmans L. A., van den Heuvel L. P. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995 May;10(1):111–113. doi: 10.1038/ng0595-111. [DOI] [PubMed] [Google Scholar]
- Guttormsen A. B., Schneede J., Ueland P. M., Refsum H. Kinetics of total plasma homocysteine in subjects with hyperhomocysteinemia due to folate or cobalamin deficiency. Am J Clin Nutr. 1996 Feb;63(2):194–202. doi: 10.1093/ajcn/63.2.194. [DOI] [PubMed] [Google Scholar]
- Harmon D. L., Woodside J. V., Yarnell J. W., McMaster D., Young I. S., McCrum E. E., Gey K. F., Whitehead A. S., Evans A. E. The common 'thermolabile' variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocysteinaemia. QJM. 1996 Aug;89(8):571–577. doi: 10.1093/qjmed/89.8.571. [DOI] [PubMed] [Google Scholar]
- Harris E. K., Kanofsky P., Shakarji G., Cotlove E. Biological and analytic components of variation in long-term studies of serum constituents in normal subjects. II. Estimating biological components of variation. Clin Chem. 1970 Dec;16(12):1022–1027. [PubMed] [Google Scholar]
- Jacob R. A., Wu M. M., Henning S. M., Swendseid M. E. Homocysteine increases as folate decreases in plasma of healthy men during short-term dietary folate and methyl group restriction. J Nutr. 1994 Jul;124(7):1072–1080. doi: 10.1093/jn/124.7.1072. [DOI] [PubMed] [Google Scholar]
- Jacques P. F., Bostom A. G., Williams R. R., Ellison R. C., Eckfeldt J. H., Rosenberg I. H., Selhub J., Rozen R. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation. 1996 Jan 1;93(1):7–9. doi: 10.1161/01.cir.93.1.7. [DOI] [PubMed] [Google Scholar]
- Kang S. S., Passen E. L., Ruggie N., Wong P. W., Sora H. Thermolabile defect of methylenetetrahydrofolate reductase in coronary artery disease. Circulation. 1993 Oct;88(4 Pt 1):1463–1469. doi: 10.1161/01.cir.88.4.1463. [DOI] [PubMed] [Google Scholar]
- Kang S. S., Wong P. W., Malinow M. R. Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Annu Rev Nutr. 1992;12:279–298. doi: 10.1146/annurev.nu.12.070192.001431. [DOI] [PubMed] [Google Scholar]
- Kang S. S., Zhou J., Wong P. W., Kowalisyn J., Strokosch G. Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet. 1988 Oct;43(4):414–421. [PMC free article] [PubMed] [Google Scholar]
- Kluijtmans L. A., van den Heuvel L. P., Boers G. H., Frosst P., Stevens E. M., van Oost B. A., den Heijer M., Trijbels F. J., Rozen R., Blom H. J. Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease. Am J Hum Genet. 1996 Jan;58(1):35–41. [PMC free article] [PubMed] [Google Scholar]
- Miller J. W., Nadeau M. R., Smith D., Selhub J. Vitamin B-6 deficiency vs folate deficiency: comparison of responses to methionine loading in rats. Am J Clin Nutr. 1994 May;59(5):1033–1039. doi: 10.1093/ajcn/59.5.1033. [DOI] [PubMed] [Google Scholar]
- Miller J. W., Ribaya-Mercado J. D., Russell R. M., Shepard D. C., Morrow F. D., Cochary E. F., Sadowski J. A., Gershoff S. N., Selhub J. Effect of vitamin B-6 deficiency on fasting plasma homocysteine concentrations. Am J Clin Nutr. 1992 Jun;55(6):1154–1160. doi: 10.1093/ajcn/55.6.1154. [DOI] [PubMed] [Google Scholar]
- Motulsky A. G. Nutritional ecogenetics: homocysteine-related arteriosclerotic vascular disease, neural tube defects, and folic acid. Am J Hum Genet. 1996 Jan;58(1):17–20. [PMC free article] [PubMed] [Google Scholar]
- Naurath H. J., Joosten E., Riezler R., Stabler S. P., Allen R. H., Lindenbaum J. Effects of vitamin B12, folate, and vitamin B6 supplements in elderly people with normal serum vitamin concentrations. Lancet. 1995 Jul 8;346(8967):85–89. doi: 10.1016/s0140-6736(95)92113-3. [DOI] [PubMed] [Google Scholar]
- Nygård O., Vollset S. E., Refsum H., Stensvold I., Tverdal A., Nordrehaug J. E., Ueland M., Kvåle G. Total plasma homocysteine and cardiovascular risk profile. The Hordaland Homocysteine Study. JAMA. 1995 Nov 15;274(19):1526–1533. doi: 10.1001/jama.1995.03530190040032. [DOI] [PubMed] [Google Scholar]
- O'Keefe C. A., Bailey L. B., Thomas E. A., Hofler S. A., Davis B. A., Cerda J. J., Gregory J. F., 3rd Controlled dietary folate affects folate status in nonpregnant women. J Nutr. 1995 Oct;125(10):2717–2725. doi: 10.1093/jn/125.10.2717. [DOI] [PubMed] [Google Scholar]
- Perry I. J., Refsum H., Morris R. W., Ebrahim S. B., Ueland P. M., Shaper A. G. Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet. 1995 Nov 25;346(8987):1395–1398. doi: 10.1016/s0140-6736(95)92407-8. [DOI] [PubMed] [Google Scholar]
- Rasmussen K., Møller J., Lyngbak M., Pedersen A. M., Dybkjaer L. Age- and gender-specific reference intervals for total homocysteine and methylmalonic acid in plasma before and after vitamin supplementation. Clin Chem. 1996 Apr;42(4):630–636. [PubMed] [Google Scholar]
- Refsum H., Ueland P. M., Svardal A. M. Fully automated fluorescence assay for determining total homocysteine in plasma. Clin Chem. 1989 Sep;35(9):1921–1927. [PubMed] [Google Scholar]
- Schneede J., Ueland P. M. Application of capillary electrophoresis with laser-induced fluorescence detection for routine determination of methylmalonic acid in human serum. Anal Chem. 1995 Mar 1;67(5):812–819. doi: 10.1021/ac00101a005. [DOI] [PubMed] [Google Scholar]
- Selhub J., Jacques P. F., Wilson P. W., Rush D., Rosenberg I. H. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA. 1993 Dec 8;270(22):2693–2698. doi: 10.1001/jama.1993.03510220049033. [DOI] [PubMed] [Google Scholar]
- Skeidsvoll J., Ueland P. M. Analysis of double-stranded DNA by capillary electrophoresis with laser-induced fluorescence detection using the monomeric dye SYBR green I. Anal Biochem. 1995 Nov 1;231(2):359–365. doi: 10.1006/abio.1995.9986. [DOI] [PubMed] [Google Scholar]
- Ubbink J. B., Becker P. J., Vermaak W. J., Delport R. Results of B-vitamin supplementation study used in a prediction model to define a reference range for plasma homocysteine. Clin Chem. 1995 Jul;41(7):1033–1037. [PubMed] [Google Scholar]
- Ubbink J. B., Vermaak W. J., van der Merwe A., Becker P. J., Delport R., Potgieter H. C. Vitamin requirements for the treatment of hyperhomocysteinemia in humans. J Nutr. 1994 Oct;124(10):1927–1933. doi: 10.1093/jn/124.10.1927. [DOI] [PubMed] [Google Scholar]
- Ubbink J. B., Vermaak W. J., van der Merwe A., Becker P. J. Vitamin B-12, vitamin B-6, and folate nutritional status in men with hyperhomocysteinemia. Am J Clin Nutr. 1993 Jan;57(1):47–53. doi: 10.1093/ajcn/57.1.47. [DOI] [PubMed] [Google Scholar]
- Ueland P. M., Refsum H., Stabler S. P., Malinow M. R., Andersson A., Allen R. H. Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem. 1993 Sep;39(9):1764–1779. [PubMed] [Google Scholar]
- Whitehead A. S., Gallagher P., Mills J. L., Kirke P. N., Burke H., Molloy A. M., Weir D. G., Shields D. C., Scott J. M. A genetic defect in 5,10 methylenetetrahydrofolate reductase in neural tube defects. QJM. 1995 Nov;88(11):763–766. [PubMed] [Google Scholar]
- Williams G. Z., Young D. S., Stein M. R., Cotlove E. Biological and analytic components of variation in long-term studies of serum constituents in normal subjects. I. Objectives, subject selection, laboratory procedures, and estimation of analytic deviation. Clin Chem. 1970 Dec;16(12):1016–1021. [PubMed] [Google Scholar]
- van der Put N. M., Steegers-Theunissen R. P., Frosst P., Trijbels F. J., Eskes T. K., van den Heuvel L. P., Mariman E. C., den Heyer M., Rozen R., Blom H. J. Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet. 1995 Oct 21;346(8982):1070–1071. doi: 10.1016/s0140-6736(95)91743-8. [DOI] [PubMed] [Google Scholar]