Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Nov 15;98(10):2201–2208. doi: 10.1172/JCI119029

Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development.

J Shen 1, E Herderick 1, J F Cornhill 1, E Zsigmond 1, H S Kim 1, H Kühn 1, N V Guevara 1, L Chan 1
PMCID: PMC507668  PMID: 8941635

Abstract

Oxidative modification of LDL increases its atherogenicity, and 15-lipoxygenase (15-LO) has been implicated in the process. To address this issue, we generated transgenic rabbits that expressed 15-LO in a macrophage-specific manner and studied their susceptibility to atherosclerosis development when they were fed a high-fat, high-cholesterol (HFHC) diet (Teklad 0533 rabbit diet 7009 with 10% corn oil and 0.25% cholesterol) for 13.5 wk. Transgenic and nontransgenic rabbits developed similar degrees of hypercholesterolemia and had similar levels of triglyceride, VLDL, LDL, and HDL. Quantitative morphometric analysis of the aortic atherosclerosis indicated that the transgenic animals (n = 19) had significantly smaller lesion areas (9.8+/-6.5%, mean+/-SD) than their littermate controls (n = 14, 17.8+/-15.0%) (P < 0.05). In a subgroup (n = 9) of transgenic rabbits that received the HFHC diet plus the antioxidant N',N '-diphenyl-phenylenediamine (1%), the extent of lesion involvement (9.8+/-7.5%) did not differ from the subgroup (n = 10) that received the regular HFHC diet (9.7+/-5.9%). Since the results were unexpected, we repeated the experiments. Again, we found that the nontransgenic littermates (n = 12) had more extensive lesions (11.6+/-10.6%) than the transgenic rabbits (n = 13; 9.5+/-7.8%), although the difference was not significant. In a third set of experiments, we crossed 15-LO transgenic rabbits with Watanabe heritable hyperlipidemic (WHHL) rabbits and found that the lesion area in the 15-LO transgenic/heterozygous WHHL rabbits (n = 14) was only about one third (7.7+/-5.7%) that found in nontransgenic heterozygous WHHL littermate controls (n = 11, 20.7+/-19.4%) (P < 0.05). These data suggest that overexpression of 15-LO in monocytes/macrophages protects against lipid deposition in the vessel wall during early atherogenesis in these rabbit models of atherosclerosis.

Full Text

The Full Text of this article is available as a PDF (656.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benz D. J., Mol M., Ezaki M., Mori-Ito N., Zelán I., Miyanohara A., Friedmann T., Parthasarathy S., Steinberg D., Witztum J. L. Enhanced levels of lipoperoxides in low density lipoprotein incubated with murine fibroblast expressing high levels of human 15-lipoxygenase. J Biol Chem. 1995 Mar 10;270(10):5191–5197. doi: 10.1074/jbc.270.10.5191. [DOI] [PubMed] [Google Scholar]
  2. Björkhem I., Henriksson-Freyschuss A., Breuer O., Diczfalusy U., Berglund L., Henriksson P. The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arterioscler Thromb. 1991 Jan-Feb;11(1):15–22. doi: 10.1161/01.atv.11.1.15. [DOI] [PubMed] [Google Scholar]
  3. Bonifer C., Vidal M., Grosveld F., Sippel A. E. Tissue specific and position independent expression of the complete gene domain for chicken lysozyme in transgenic mice. EMBO J. 1990 Sep;9(9):2843–2848. doi: 10.1002/j.1460-2075.1990.tb07473.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buchanan M. R., Butt R. W., Magas Z., van Ryn J., Hirsh J., Nazir D. J. Endothelial cells produce a lipoxygenase derived chemo-repellent which influences platelet/endothelial cell interactions--effect of aspirin and salicylate. Thromb Haemost. 1985 Jun 24;53(3):306–311. [PubMed] [Google Scholar]
  5. Buchanan M. R., Haas T. A., Lagarde M., Guichardant M. 13-Hydroxyoctadecadienoic acid is the vessel wall chemorepellant factor, LOX. J Biol Chem. 1985 Dec 25;260(30):16056–16059. [PubMed] [Google Scholar]
  6. Carew T. E., Schwenke D. C., Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7725–7729. doi: 10.1073/pnas.84.21.7725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chait A., Heinecke J. W. Lipoprotein modification: cellular mechanisms. Curr Opin Lipidol. 1994 Oct;5(5):365–370. doi: 10.1097/00041433-199410000-00008. [DOI] [PubMed] [Google Scholar]
  8. Conrad D. J., Kuhn H., Mulkins M., Highland E., Sigal E. Specific inflammatory cytokines regulate the expression of human monocyte 15-lipoxygenase. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):217–221. doi: 10.1073/pnas.89.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cornhill J. F., Barrett W. A., Herderick E. E., Mahley R. W., Fry D. L. Topographic study of sudanophilic lesions in cholesterol-fed minipigs by image analysis. Arteriosclerosis. 1985 Sep-Oct;5(5):415–426. doi: 10.1161/01.atv.5.5.415. [DOI] [PubMed] [Google Scholar]
  10. Elinder L. S., Walldius G. Antioxidants and atherosclerosis progression: unresolved questions. Curr Opin Lipidol. 1994 Aug;5(4):265–268. doi: 10.1097/00041433-199408000-00004. [DOI] [PubMed] [Google Scholar]
  11. Guzmán M. A., McMahan C. A., McGill H. C., Jr, Strong J. P., Tejada C., Restrepo C., Eggen D. A., Robertson W. B., Solberg L. A. Selected methodologic aspects of the International Atherosclerosis Project. Lab Invest. 1968 May;18(5):479–497. [PubMed] [Google Scholar]
  12. Haas T. A., Bastida E., Nakamura K., Hullin F., Admirall L., Buchanan M. R. Binding of 13-HODE and 5-, 12- and 15-HETE to endothelial cells and subsequent platelet, neutrophil and tumor cell adhesion. Biochim Biophys Acta. 1988 Jul 22;961(2):153–159. doi: 10.1016/0005-2760(88)90108-7. [DOI] [PubMed] [Google Scholar]
  13. Haberland M. E., Fong D., Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science. 1988 Jul 8;241(4862):215–218. doi: 10.1126/science.2455346. [DOI] [PubMed] [Google Scholar]
  14. Kita T., Nagano Y., Yokode M., Ishii K., Kume N., Ooshima A., Yoshida H., Kawai C. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5928–5931. doi: 10.1073/pnas.84.16.5928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kühn H., Belkner J., Suzuki H., Yamamoto S. Oxidative modification of human lipoproteins by lipoxygenases of different positional specificities. J Lipid Res. 1994 Oct;35(10):1749–1759. [PubMed] [Google Scholar]
  16. Kühn H., Belkner J., Zaiss S., Fährenklemper T., Wohlfeil S. Involvement of 15-lipoxygenase in early stages of atherogenesis. J Exp Med. 1994 Jun 1;179(6):1903–1911. doi: 10.1084/jem.179.6.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Li J., Fang B., Eisensmith R. C., Li X. H., Nasonkin I., Lin-Lee Y. C., Mims M. P., Hughes A., Montgomery C. D., Roberts J. D. In vivo gene therapy for hyperlipidemia: phenotypic correction in Watanabe rabbits by hepatic delivery of the rabbit LDL receptor gene. J Clin Invest. 1995 Feb;95(2):768–773. doi: 10.1172/JCI117725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Palinski W., Rosenfeld M. E., Ylä-Herttuala S., Gurtner G. C., Socher S. S., Butler S. W., Parthasarathy S., Carew T. E., Steinberg D., Witztum J. L. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1372–1376. doi: 10.1073/pnas.86.4.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Parthasarathy S., Santanam N. Mechanisms of oxidation, antioxidants, and atherosclerosis. Curr Opin Lipidol. 1994 Oct;5(5):371–375. doi: 10.1097/00041433-199410000-00009. [DOI] [PubMed] [Google Scholar]
  20. Rankin S. M., Parthasarathy S., Steinberg D. Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages. J Lipid Res. 1991 Mar;32(3):449–456. [PubMed] [Google Scholar]
  21. Rossman M. D., Chien P., Cassizzi-Cprek A., Elias J. A., Holian A., Schreiber A. D. The binding of monomeric IgG to human blood monocytes and alveolar macrophages. Am Rev Respir Dis. 1986 Feb;133(2):292–297. doi: 10.1164/arrd.1986.133.2.292. [DOI] [PubMed] [Google Scholar]
  22. Salonen J. T., Ylä-Herttuala S., Yamamoto R., Butler S., Korpela H., Salonen R., Nyyssönen K., Palinski W., Witztum J. L. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet. 1992 Apr 11;339(8798):883–887. doi: 10.1016/0140-6736(92)90926-t. [DOI] [PubMed] [Google Scholar]
  23. Setty B. N., Berger M., Stuart M. J. 13-Hydroxyoctadecadienoic acid (13-HODE) stimulates prostacyclin production by endothelial cells. Biochem Biophys Res Commun. 1987 Jul 31;146(2):502–509. doi: 10.1016/0006-291x(87)90557-2. [DOI] [PubMed] [Google Scholar]
  24. Shen J., Kühn H., Petho-Schramm A., Chan L. Transgenic rabbits with the integrated human 15-lipoxygenase gene driven by a lysozyme promoter: macrophage-specific expression and variable positional specificity of the transgenic enzyme. FASEB J. 1995 Dec;9(15):1623–1631. doi: 10.1096/fasebj.9.15.8529842. [DOI] [PubMed] [Google Scholar]
  25. Sigal E., Craik C. S., Highland E., Grunberger D., Costello L. L., Dixon R. A., Nadel J. A. Molecular cloning and primary structure of human 15-lipoxygenase. Biochem Biophys Res Commun. 1988 Dec 15;157(2):457–464. doi: 10.1016/s0006-291x(88)80271-7. [DOI] [PubMed] [Google Scholar]
  26. Simon T. C., Makheja A. N., Bailey J. M. Relationship of vascular 15-lipoxygenase induction to atherosclerotic plaque formation in rabbits. Prostaglandins Leukot Essent Fatty Acids. 1990 Dec;41(4):273–278. doi: 10.1016/0952-3278(90)90142-8. [DOI] [PubMed] [Google Scholar]
  27. Simon T. C., Makheja A. N., Bailey J. M. The induced lipoxygenase in atherosclerotic aorta converts linoleic acid to the platelet chemorepellant factor 13-HODE. Thromb Res. 1989 Jul 15;55(2):171–178. doi: 10.1016/0049-3848(89)90433-7. [DOI] [PubMed] [Google Scholar]
  28. Sparrow C. P., Doebber T. W., Olszewski J., Wu M. S., Ventre J., Stevens K. A., Chao Y. S. Low density lipoprotein is protected from oxidation and the progression of atherosclerosis is slowed in cholesterol-fed rabbits by the antioxidant N,N'-diphenyl-phenylenediamine. J Clin Invest. 1992 Jun;89(6):1885–1891. doi: 10.1172/JCI115793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sparrow C. P., Parthasarathy S., Steinberg D. Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. J Lipid Res. 1988 Jun;29(6):745–753. [PubMed] [Google Scholar]
  30. Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
  31. Yamaja Setty B. N., Berger M., Stuart M. J. 13-Hydroxyoctadeca-9,11-dienoic acid (13-HODE) inhibits thromboxane A2 synthesis, and stimulates 12-HETE production in human platelets. Biochem Biophys Res Commun. 1987 Oct 29;148(2):528–533. doi: 10.1016/0006-291x(87)90908-9. [DOI] [PubMed] [Google Scholar]
  32. Ylä-Herttuala S., Luoma J., Viita H., Hiltunen T., Sisto T., Nikkari T. Transfer of 15-lipoxygenase gene into rabbit iliac arteries results in the appearance of oxidation-specific lipid-protein adducts characteristic of oxidized low density lipoprotein. J Clin Invest. 1995 Jun;95(6):2692–2698. doi: 10.1172/JCI117971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ylä-Herttuala S., Palinski W., Rosenfeld M. E., Parthasarathy S., Carew T. E., Butler S., Witztum J. L., Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest. 1989 Oct;84(4):1086–1095. doi: 10.1172/JCI114271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ylä-Herttuala S., Rosenfeld M. E., Parthasarathy S., Glass C. K., Sigal E., Witztum J. L., Steinberg D. Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6959–6963. doi: 10.1073/pnas.87.18.6959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ylä-Herttuala S., Rosenfeld M. E., Parthasarathy S., Sigal E., Särkioja T., Witztum J. L., Steinberg D. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest. 1991 Apr;87(4):1146–1152. doi: 10.1172/JCI115111. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES