Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Nov 15;98(10):2209–2217. doi: 10.1172/JCI119030

Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD.

C E Murry 1, M A Kay 1, T Bartosek 1, S D Hauschka 1, S M Schwartz 1
PMCID: PMC507669  PMID: 8941636

Abstract

Myocardial infarcts heal by scar formation because there are no stem cells in myocardium, and because adult myocytes cannot divide and repopulate the wound. We sought to redirect the heart to form skeletal muscle instead of scar by transferring the myogenic determination gene, MyoD, into cardiac granulation (wound repair) tissue. A replication-defective adenovirus was constructed containing MyoD under transcriptional control of the Rous sarcoma virus long terminal repeat. The virus converted cultured cardiac fibroblasts to skeletal muscle, indicated by expression of myogenin and skeletal myosin heavy chains (MHCs). To determine if MyoD could induce muscle differentiation in vivo, we injected 2 x 10(9) or 10(10) pfu of either the MyoD or a control beta-galactosidase adenovirus into healing rat hearts, injured 1 wk previously by freeze-thaw. After receiving the lower viral dose, cardiac granulation tissue expressed MyoD mRNA and protein, but did not express myogenin or skeletal MHC. When the higher dose of virus was administered, double immunostaining showed that cells in reparative tissue expressed both myogenin and embryonic skeletal MHC. No muscle differentiation occurred after beta-galactosidase transfection. Thus, MyoD gene transfer can induce skeletal muscle differentiation in healing heart lesions. Modifications of this strategy might eventually provide new contractile tissue to repair myocardial infarcts.

Full Text

The Full Text of this article is available as a PDF (465.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader D., Masaki T., Fischman D. A. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J Cell Biol. 1982 Dec;95(3):763–770. doi: 10.1083/jcb.95.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balogh S., Naus C. C., Merrifield P. A. Expression of gap junctions in cultured rat L6 cells during myogenesis. Dev Biol. 1993 Feb;155(2):351–360. doi: 10.1006/dbio.1993.1034. [DOI] [PubMed] [Google Scholar]
  3. Bengal E., Ransone L., Scharfmann R., Dwarki V. J., Tapscott S. J., Weintraub H., Verma I. M. Functional antagonism between c-Jun and MyoD proteins: a direct physical association. Cell. 1992 Feb 7;68(3):507–519. doi: 10.1016/0092-8674(92)90187-h. [DOI] [PubMed] [Google Scholar]
  4. Choi J., Costa M. L., Mermelstein C. S., Chagas C., Holtzer S., Holtzer H. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7988–7992. doi: 10.1073/pnas.87.20.7988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Clegg C. H., Linkhart T. A., Olwin B. B., Hauschka S. D. Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J Cell Biol. 1987 Aug;105(2):949–956. doi: 10.1083/jcb.105.2.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis R. L., Weintraub H., Lassar A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 Dec 24;51(6):987–1000. doi: 10.1016/0092-8674(87)90585-x. [DOI] [PubMed] [Google Scholar]
  8. Edwards J. G., Lyons G. E., Micales B. K., Malhotra A., Factor S., Leinwand L. A. Cardiomyopathy in transgenic myf5 mice. Circ Res. 1996 Mar;78(3):379–387. doi: 10.1161/01.res.78.3.379. [DOI] [PubMed] [Google Scholar]
  9. Faerman A., Pearson-White S., Emerson C., Shani M. Ectopic expression of MyoD1 in mice causes prenatal lethalities. Dev Dyn. 1993 Mar;196(3):165–173. doi: 10.1002/aja.1001960303. [DOI] [PubMed] [Google Scholar]
  10. Fang B., Eisensmith R. C., Li X. H., Finegold M. J., Shedlovsky A., Dove W., Woo S. L. Gene therapy for phenylketonuria: phenotypic correction in a genetically deficient mouse model by adenovirus-mediated hepatic gene transfer. Gene Ther. 1994 Jul;1(4):247–254. [PubMed] [Google Scholar]
  11. Halevy O., Novitch B. G., Spicer D. B., Skapek S. X., Rhee J., Hannon G. J., Beach D., Lassar A. B. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science. 1995 Feb 17;267(5200):1018–1021. doi: 10.1126/science.7863327. [DOI] [PubMed] [Google Scholar]
  12. Hasty P., Bradley A., Morris J. H., Edmondson D. G., Venuti J. M., Olson E. N., Klein W. H. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature. 1993 Aug 5;364(6437):501–506. doi: 10.1038/364501a0. [DOI] [PubMed] [Google Scholar]
  13. Havenith M. G., Visser R., Schrijvers-van Schendel J. M., Bosman F. T. Muscle fiber typing in routinely processed skeletal muscle with monoclonal antibodies. Histochemistry. 1990;93(5):497–499. doi: 10.1007/BF00266407. [DOI] [PubMed] [Google Scholar]
  14. Hopwood N. D., Gurdon J. B. Activation of muscle genes without myogenesis by ectopic expression of MyoD in frog embryo cells. Nature. 1990 Sep 13;347(6289):197–200. doi: 10.1038/347197a0. [DOI] [PubMed] [Google Scholar]
  15. Kass-Eisler A., Falck-Pedersen E., Alvira M., Rivera J., Buttrick P. M., Wittenberg B. A., Cipriani L., Leinwand L. A. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11498–11502. doi: 10.1073/pnas.90.24.11498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaushal S., Schneider J. W., Nadal-Ginard B., Mahdavi V. Activation of the myogenic lineage by MEF2A, a factor that induces and cooperates with MyoD. Science. 1994 Nov 18;266(5188):1236–1240. doi: 10.1126/science.7973707. [DOI] [PubMed] [Google Scholar]
  17. Kay M. A., Holterman A. X., Meuse L., Gown A., Ochs H. D., Linsley P. S., Wilson C. B. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig administration. Nat Genet. 1995 Oct;11(2):191–197. doi: 10.1038/ng1095-191. [DOI] [PubMed] [Google Scholar]
  18. Koh G. Y., Klug M. G., Soonpaa M. H., Field L. J. Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest. 1993 Sep;92(3):1548–1554. doi: 10.1172/JCI116734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee S. W., Trapnell B. C., Rade J. J., Virmani R., Dichek D. A. In vivo adenoviral vector-mediated gene transfer into balloon-injured rat carotid arteries. Circ Res. 1993 Nov;73(5):797–807. doi: 10.1161/01.res.73.5.797. [DOI] [PubMed] [Google Scholar]
  20. Li L., Chambard J. C., Karin M., Olson E. N. Fos and Jun repress transcriptional activation by myogenin and MyoD: the amino terminus of Jun can mediate repression. Genes Dev. 1992 Apr;6(4):676–689. doi: 10.1101/gad.6.4.676. [DOI] [PubMed] [Google Scholar]
  21. Ludolph D. C., Neff A. W., Mescher A. L., Malacinski G. M., Parker M. A., Smith R. C. Overexpression of XMyoD or XMyf5 in Xenopus embryos induces the formation of enlarged myotomes through recruitment of cells of nonsomitic lineage. Dev Biol. 1994 Nov;166(1):18–33. doi: 10.1006/dbio.1994.1294. [DOI] [PubMed] [Google Scholar]
  22. MacCalman C. D., Bardeesy N., Holland P. C., Blaschuk O. W. Noncoordinate developmental regulation of N-cadherin, N-CAM, integrin, and fibronectin mRNA levels during myoblast terminal differentiation. Dev Dyn. 1992 Oct;195(2):127–132. doi: 10.1002/aja.1001950207. [DOI] [PubMed] [Google Scholar]
  23. Magri K. A., Ewton D. Z., Florini J. R. The role of the IGFs in myogenic differentiation. Adv Exp Med Biol. 1991;293:57–76. doi: 10.1007/978-1-4684-5949-4_6. [DOI] [PubMed] [Google Scholar]
  24. McGrory W. J., Bautista D. S., Graham F. L. A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology. 1988 Apr;163(2):614–617. doi: 10.1016/0042-6822(88)90302-9. [DOI] [PubMed] [Google Scholar]
  25. Miner J. H., Miller J. B., Wold B. J. Skeletal muscle phenotypes initiated by ectopic MyoD in transgenic mouse heart. Development. 1992 Apr;114(4):853–860. doi: 10.1242/dev.114.4.853. [DOI] [PubMed] [Google Scholar]
  26. Molkentin J. D., Black B. L., Martin J. F., Olson E. N. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell. 1995 Dec 29;83(7):1125–1136. doi: 10.1016/0092-8674(95)90139-6. [DOI] [PubMed] [Google Scholar]
  27. Murry C. E., Giachelli C. M., Schwartz S. M., Vracko R. Macrophages express osteopontin during repair of myocardial necrosis. Am J Pathol. 1994 Dec;145(6):1450–1462. [PMC free article] [PubMed] [Google Scholar]
  28. Nabeshima Y., Hanaoka K., Hayasaka M., Esumi E., Li S., Nonaka I., Nabeshima Y. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature. 1993 Aug 5;364(6437):532–535. doi: 10.1038/364532a0. [DOI] [PubMed] [Google Scholar]
  29. Olson E. N. Interplay between proliferation and differentiation within the myogenic lineage. Dev Biol. 1992 Dec;154(2):261–272. doi: 10.1016/0012-1606(92)90066-p. [DOI] [PubMed] [Google Scholar]
  30. Ontell M. P., Hughes D., Hauschka S. D., Ontell M. Transient neonatal denervation alters the proliferative capacity of myosatellite cells in dystrophic (129ReJdy/dy) muscle. J Neurobiol. 1992 Jun;23(4):407–419. doi: 10.1002/neu.480230407. [DOI] [PubMed] [Google Scholar]
  31. Quaini F., Cigola E., Lagrasta C., Saccani G., Quaini E., Rossi C., Olivetti G., Anversa P. End-stage cardiac failure in humans is coupled with the induction of proliferating cell nuclear antigen and nuclear mitotic division in ventricular myocytes. Circ Res. 1994 Dec;75(6):1050–1063. doi: 10.1161/01.res.75.6.1050. [DOI] [PubMed] [Google Scholar]
  32. Rudnicki M. A., Jackowski G., Saggin L., McBurney M. W. Actin and myosin expression during development of cardiac muscle from cultured embryonal carcinoma cells. Dev Biol. 1990 Apr;138(2):348–358. doi: 10.1016/0012-1606(90)90202-t. [DOI] [PubMed] [Google Scholar]
  33. Rudnicki M. A., Schnegelsberg P. N., Stead R. H., Braun T., Arnold H. H., Jaenisch R. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell. 1993 Dec 31;75(7):1351–1359. doi: 10.1016/0092-8674(93)90621-v. [DOI] [PubMed] [Google Scholar]
  34. Santerre R. F., Bales K. R., Janney M. J., Hannon K., Fisher L. F., Bailey C. S., Morris J., Ivarie R., Smith C. K., 2nd Expression of bovine myf5 induces ectopic skeletal muscle formation in transgenic mice. Mol Cell Biol. 1993 Oct;13(10):6044–6051. doi: 10.1128/mcb.13.10.6044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schiaffino S., Gorza L., Pitton G., Saggin L., Ausoni S., Sartore S., Lømo T. Embryonic and neonatal myosin heavy chain in denervated and paralyzed rat skeletal muscle. Dev Biol. 1988 May;127(1):1–11. doi: 10.1016/0012-1606(88)90183-2. [DOI] [PubMed] [Google Scholar]
  36. Schiaffino S., Gorza L., Sartore S., Saggin L., Carli M. Embryonic myosin heavy chain as a differentiation marker of developing human skeletal muscle and rhabdomyosarcoma. A monoclonal antibody study. Exp Cell Res. 1986 Mar;163(1):211–220. doi: 10.1016/0014-4827(86)90574-4. [DOI] [PubMed] [Google Scholar]
  37. Schäfer B. W., Blakely B. T., Darlington G. J., Blau H. M. Effect of cell history on response to helix-loop-helix family of myogenic regulators. Nature. 1990 Mar 29;344(6265):454–458. doi: 10.1038/344454a0. [DOI] [PubMed] [Google Scholar]
  38. Skapek S. X., Rhee J., Spicer D. B., Lassar A. B. Inhibition of myogenic differentiation in proliferating myoblasts by cyclin D1-dependent kinase. Science. 1995 Feb 17;267(5200):1022–1024. doi: 10.1126/science.7863328. [DOI] [PubMed] [Google Scholar]
  39. Stratford-Perricaudet L. D., Makeh I., Perricaudet M., Briand P. Widespread long-term gene transfer to mouse skeletal muscles and heart. J Clin Invest. 1992 Aug;90(2):626–630. doi: 10.1172/JCI115902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tallini G., Parham D. M., Dias P., Cordon-Cardo C., Houghton P. J., Rosai J. Myogenic regulatory protein expression in adult soft tissue sarcomas. A sensitive and specific marker of skeletal muscle differentiation. Am J Pathol. 1994 Apr;144(4):693–701. [PMC free article] [PubMed] [Google Scholar]
  41. Tam S. K., Gu W., Nadal-Ginard B. Molecular cardiomyoplasty: potential cardiac gene therapy for chronic heart failure. J Thorac Cardiovasc Surg. 1995 May;109(5):918–924. doi: 10.1016/S0022-5223(95)70317-9. [DOI] [PubMed] [Google Scholar]
  42. Tapscott S. J., Weintraub H. MyoD and the regulation of myogenesis by helix-loop-helix proteins. J Clin Invest. 1991 Apr;87(4):1133–1138. doi: 10.1172/JCI115109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Templeton T. J., Hauschka S. D. FGF-mediated aspects of skeletal muscle growth and differentiation are controlled by a high affinity receptor, FGFR1. Dev Biol. 1992 Nov;154(1):169–181. doi: 10.1016/0012-1606(92)90057-n. [DOI] [PubMed] [Google Scholar]
  44. Thayer M. J., Tapscott S. J., Davis R. L., Wright W. E., Lassar A. B., Weintraub H. Positive autoregulation of the myogenic determination gene MyoD1. Cell. 1989 Jul 28;58(2):241–248. doi: 10.1016/0092-8674(89)90838-6. [DOI] [PubMed] [Google Scholar]
  45. Villarreal F. J., Kim N. N., Ungab G. D., Printz M. P., Dillmann W. H. Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation. 1993 Dec;88(6):2849–2861. doi: 10.1161/01.cir.88.6.2849. [DOI] [PubMed] [Google Scholar]
  46. Vracko R., Thorning D. Contractile cells in rat myocardial scar tissue. Lab Invest. 1991 Aug;65(2):214–227. [PubMed] [Google Scholar]
  47. Vracko R., Thorning D., Frederickson R. G., Cunningham D. Myocyte reactions at the borders of injured and healing rat myocardium. Lab Invest. 1988 Jul;59(1):104–114. [PubMed] [Google Scholar]
  48. Vracko R., Thorning D., Frederickson R. G. Fate of nerve fibers in necrotic, healing, and healed rat myocardium. Lab Invest. 1990 Oct;63(4):490–501. [PubMed] [Google Scholar]
  49. Weintraub H., Davis R., Tapscott S., Thayer M., Krause M., Benezra R., Blackwell T. K., Turner D., Rupp R., Hollenberg S. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991 Feb 15;251(4995):761–766. doi: 10.1126/science.1846704. [DOI] [PubMed] [Google Scholar]
  50. Weintraub H., Tapscott S. J., Davis R. L., Thayer M. J., Adam M. A., Lassar A. B., Miller A. D. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5434–5438. doi: 10.1073/pnas.86.14.5434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wright W. E., Binder M., Funk W. Cyclic amplification and selection of targets (CASTing) for the myogenin consensus binding site. Mol Cell Biol. 1991 Aug;11(8):4104–4110. doi: 10.1128/mcb.11.8.4104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Yang Y., Nunes F. A., Berencsi K., Furth E. E., Gönczöl E., Wilson J. M. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4407–4411. doi: 10.1073/pnas.91.10.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES