Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Nov 15;98(10):2235–2243. doi: 10.1172/JCI119033

Can immunoglobulin C(H)1 constant region domain modulate antigen binding affinity of antibodies?

O Pritsch 1, G Hudry-Clergeon 1, M Buckle 1, Y Petillot 1, J P Bouvet 1, J Gagnon 1, G Dighiero 1
PMCID: PMC507672  PMID: 8941639

Abstract

Although the switch process is frequently associated with affinity maturation, the constant region is not assumed to play a role in Ag-Ab binding. In the present work, we demonstrate that two clonally related human monoclonal Igs sharing identical V(H) and V(L) sequences, but expressing different isotypes (IgA1kappa(PER) and IgG1kappa(PER)), bind tubulin with significantly different affinities. This difference was mainly accounted for by a disparity in the association rate constants. These results suggest that affinity maturation of this clone could be achieved through class switching in the absence of further somatic mutations. Since the differences observed were found at the Fab level, they also suggest a role for the C(H)1 domain in structuring the Ag-binding site into a more kinetically competent form.

Full Text

The Full Text of this article is available as a PDF (299.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Betz A. G., Rada C., Pannell R., Milstein C., Neuberger M. S. Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2385–2388. doi: 10.1073/pnas.90.6.2385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhat T. N., Bentley G. A., Fischmann T. O., Boulot G., Poljak R. J. Small rearrangements in structures of Fv and Fab fragments of antibody D1.3 on antigen binding. Nature. 1990 Oct 4;347(6292):483–485. doi: 10.1038/347483a0. [DOI] [PubMed] [Google Scholar]
  3. Cavacini L. A., Emes C. L., Power J., Duval M., Posner M. R. Effect of antibody valency on interaction with cell-surface expressed HIV-1 and viral neutralization. J Immunol. 1994 Mar 1;152(5):2538–2545. [PubMed] [Google Scholar]
  4. Cebra J. J., Komisar J. L., Schweitzer P. A. CH isotype 'switching' during normal B-lymphocyte development. Annu Rev Immunol. 1984;2:493–548. doi: 10.1146/annurev.iy.02.040184.002425. [DOI] [PubMed] [Google Scholar]
  5. Chothia C., Novotný J., Bruccoleri R., Karplus M. Domain association in immunoglobulin molecules. The packing of variable domains. J Mol Biol. 1985 Dec 5;186(3):651–663. doi: 10.1016/0022-2836(85)90137-8. [DOI] [PubMed] [Google Scholar]
  6. Cooper L. J., Robertson D., Granzow R., Greenspan N. S. Variable domain-identical antibodies exhibit IgG subclass-related differences in affinity and kinetic constants as determined by surface plasmon resonance. Mol Immunol. 1994 Jun;31(8):577–584. doi: 10.1016/0161-5890(94)90165-1. [DOI] [PubMed] [Google Scholar]
  7. Davies D. R., Sheriff S., Padlan E. Comparative study of two Fab-lysozyme crystal structures. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):233–238. doi: 10.1101/sqb.1989.054.01.029. [DOI] [PubMed] [Google Scholar]
  8. Dighiero G., Guilbert B., Fermand J. P., Lymberi P., Danon F., Avrameas S. Thirty-six human monoclonal immunoglobulins with antibody activity against cytoskeleton proteins, thyroglobulin, and native DNA: immunologic studies and clinical correlations. Blood. 1983 Aug;62(2):264–270. [PubMed] [Google Scholar]
  9. Eigenbrot C., Randal M., Presta L., Carter P., Kossiakoff A. A. X-ray structures of the antigen-binding domains from three variants of humanized anti-p185HER2 antibody 4D5 and comparison with molecular modeling. J Mol Biol. 1993 Feb 20;229(4):969–995. doi: 10.1006/jmbi.1993.1099. [DOI] [PubMed] [Google Scholar]
  10. Friguet B., Chaffotte A. F., Djavadi-Ohaniance L., Goldberg M. E. Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods. 1985 Mar 18;77(2):305–319. doi: 10.1016/0022-1759(85)90044-4. [DOI] [PubMed] [Google Scholar]
  11. Griffiths G. M., Berek C., Kaartinen M., Milstein C. Somatic mutation and the maturation of immune response to 2-phenyl oxazolone. Nature. 1984 Nov 15;312(5991):271–275. doi: 10.1038/312271a0. [DOI] [PubMed] [Google Scholar]
  12. Horgan C., Brown K., Pincus S. H. Studies on antigen binding by intact and hinge-deleted chimeric antibodies. J Immunol. 1993 Jun 15;150(12):5400–5407. [PubMed] [Google Scholar]
  13. Houdayer M., Bouvet J. P., Wolff A., Magnac C., Guillemot J. C., Borche L., Dighiero G. Simultaneous presence, in one serum, of four monoclonal antibodies that might correspond to different steps in a clonal evolution from polyreactive to monoreactive antibodies. J Immunol. 1993 Jan 1;150(1):311–319. [PubMed] [Google Scholar]
  14. Kehoe J. M., Capra J. D. Localization of two additional hypervariable regions in immunoglobulin heavy chains. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2019–2021. doi: 10.1073/pnas.68.9.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kirkham P. M., Schroeder H. W., Jr Antibody structure and the evolution of immunoglobulin V gene segments. Semin Immunol. 1994 Dec;6(6):347–360. doi: 10.1006/smim.1994.1045. [DOI] [PubMed] [Google Scholar]
  16. Lesk A. M., Chothia C. Elbow motion in the immunoglobulins involves a molecular ball-and-socket joint. Nature. 1988 Sep 8;335(6186):188–190. doi: 10.1038/335188a0. [DOI] [PubMed] [Google Scholar]
  17. Malmqvist M. Biospecific interaction analysis using biosensor technology. Nature. 1993 Jan 14;361(6408):186–187. doi: 10.1038/361186a0. [DOI] [PubMed] [Google Scholar]
  18. Mani J. C., Marchi V., Cucurou C. Effect of HIV-1 peptide presentation on the affinity constants of two monoclonal antibodies determined by BIAcore technology. Mol Immunol. 1994 Apr;31(6):439–444. doi: 10.1016/0161-5890(94)90063-9. [DOI] [PubMed] [Google Scholar]
  19. Padlan E. A. Anatomy of the antibody molecule. Mol Immunol. 1994 Feb;31(3):169–217. doi: 10.1016/0161-5890(94)90001-9. [DOI] [PubMed] [Google Scholar]
  20. Schneider W. P., Wensel T. G., Stryer L., Oi V. T. Genetically engineered immunoglobulins reveal structural features controlling segmental flexibility. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2509–2513. doi: 10.1073/pnas.85.8.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Straubinger B., Huber E., Lorenz W., Osterholzer E., Pargent W., Pech M., Pohlenz H. D., Zimmer F. J., Zachau H. G. The human VK locus. Characterization of a duplicated region encoding 28 different immunoglobulin genes. J Mol Biol. 1988 Jan 5;199(1):23–34. doi: 10.1016/0022-2836(88)90376-2. [DOI] [PubMed] [Google Scholar]
  22. Strong R. K., Petsko G. A., Sharon J., Margolies M. N. Three-dimensional structure of murine anti-p-azophenylarsonate Fab 36-71. 2. Structural basis of hapten binding and idiotypy. Biochemistry. 1991 Apr 16;30(15):3749–3757. doi: 10.1021/bi00229a023. [DOI] [PubMed] [Google Scholar]
  23. Takahashi H., Tamura H., Shimba N., Shimada I., Arata Y. Role of the domain-domain interaction in the construction of the antigen combining site. A comparative study by 1H-15N shift correlation NMR spectroscopy of the Fv and Fab fragments of anti-dansyl mouse monoclonal antibody. J Mol Biol. 1994 Oct 28;243(3):494–503. doi: 10.1006/jmbi.1994.1675. [DOI] [PubMed] [Google Scholar]
  24. Tello D., Eisenstein E., Schwarz F. P., Goldbaum F. A., Fields B. A., Mariuzza R. A., Poljak R. J. Structural and physicochemical analysis of the reaction between the anti-lysozyme antibody D1.3 and the anti-idiotopic antibodies E225 and E5.2. J Mol Recognit. 1994 Mar;7(1):57–62. doi: 10.1002/jmr.300070108. [DOI] [PubMed] [Google Scholar]
  25. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983 Apr 14;302(5909):575–581. doi: 10.1038/302575a0. [DOI] [PubMed] [Google Scholar]
  26. Ullén A., Nilsson B., Ahlström K. R., Makiya R., Stigbrand T. In vivo and in vitro interactions between idiotypic and antiidiotypic monoclonal antibodies against placental alkaline phosphatase. J Immunol Methods. 1995 Jun 14;183(1):155–165. doi: 10.1016/0022-1759(95)00044-b. [DOI] [PubMed] [Google Scholar]
  27. Van Regenmortel M. H. Structural and functional approaches to the study of protein antigenicity. Immunol Today. 1989 Aug;10(8):266–272. doi: 10.1016/0167-5699(89)90140-0. [DOI] [PubMed] [Google Scholar]
  28. Weigert M., Riblet R. Genetic control of antibody variable regions. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 2):837–846. doi: 10.1101/sqb.1977.041.01.093. [DOI] [PubMed] [Google Scholar]
  29. Wilson I. A., Stanfield R. L. Antibody-antigen interactions: new structures and new conformational changes. Curr Opin Struct Biol. 1994 Dec;4(6):857–867. doi: 10.1016/0959-440x(94)90267-4. [DOI] [PubMed] [Google Scholar]
  30. Yancopoulos G. D., Alt F. W. Regulation of the assembly and expression of variable-region genes. Annu Rev Immunol. 1986;4:339–368. doi: 10.1146/annurev.iy.04.040186.002011. [DOI] [PubMed] [Google Scholar]
  31. Zeder-Lutz G., Altschuh D., Geysen H. M., Trifilieff E., Sommermeyer G., Van Regenmortel M. H. Monoclonal antipeptide antibodies: affinity and kinetic rate constants measured for the peptide and the cognate protein using a biosensor technology. Mol Immunol. 1993 Feb;30(2):145–155. doi: 10.1016/0161-5890(93)90086-q. [DOI] [PubMed] [Google Scholar]
  32. Zelenetz A. D., Chen T. T., Levy R. Clonal expansion in follicular lymphoma occurs subsequent to antigenic selection. J Exp Med. 1992 Oct 1;176(4):1137–1148. doi: 10.1084/jem.176.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES