Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Nov 15;98(10):2244–2250. doi: 10.1172/JCI119034

Glucose plus insulin regulate fat oxidation by controlling the rate of fatty acid entry into the mitochondria.

L S Sidossis 1, C A Stuart 1, G I Shulman 1, G D Lopaschuk 1, R R Wolfe 1
PMCID: PMC507673  PMID: 8941640

Abstract

We tested the hypothesis that glucose plus insulin determine the rate of fat oxidation in humans by controlling the rate of fatty acid entrance into the mitochondria. We gave constant infusions of [1-13C]oleate, a long-chain fatty acid, and [1-14C]octanoate, a medium-chain fatty acid, for 3 h in seven volunteers (basal). Immediately after the basal period, a hyperinsulinemic (insulin infusion = 120 mU x m(-2) min(-1)), hyperglycemic (plasma glucose = 140 mg/dl) clamp was started and continued for 5 h. During the last 3 h of the clamp, the infusions of [1-13C]oleate and [1-14C]octanoate were repeated. Intracellular acylcarnitine concentrations were measured in muscle biopsies obtained before and after the clamp. Plasma oleate enrichment and FFA concentration were kept constant by means of variable infusions of lipids and heparin. Oleate, but not octanoate, requires carnitine binding to gain access to the mitochondrial matrix; hence, if glucose and/or insulin limit long-chain fatty acid entrance into the mitochondria, then, during the clamp, long-chain acylcarnitine formation should be decreased, causing a decrease in oleate, but not octanoate, oxidation. Oleate oxidation decreased from the basal value of 0.7+/-0.1 to 0.4+/-0.1 micromol x kg(-1) x min(-1) (P < 0.05). In contrast, octanoate oxidation remained unchanged. Long-chain acylcarnitine concentration decreased from 855+/-271 in the basal state to 376+/-83 nmol/gram dry weight during the clamp (P < 0.05). We conclude that glucose and/or insulin determine fatty acid oxidation by controlling the rate of long-chain fatty acid entrance into the mitochondria.

Full Text

The Full Text of this article is available as a PDF (193.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevilacqua S., Bonadonna R., Buzzigoli G., Boni C., Ciociaro D., Maccari F., Giorico M. A., Ferrannini E. Acute elevation of free fatty acid levels leads to hepatic insulin resistance in obese subjects. Metabolism. 1987 May;36(5):502–506. doi: 10.1016/0026-0495(87)90051-5. [DOI] [PubMed] [Google Scholar]
  2. Boden G., Chen X., Ruiz J., White J. V., Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest. 1994 Jun;93(6):2438–2446. doi: 10.1172/JCI117252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FRITZ I. B. Action of carnitine on long chain fatty acid oxidation by liver. Am J Physiol. 1959 Aug;197:297–304. doi: 10.1152/ajplegacy.1959.197.2.297. [DOI] [PubMed] [Google Scholar]
  4. Ferrannini E., Barrett E. J., Bevilacqua S., DeFronzo R. A. Effect of fatty acids on glucose production and utilization in man. J Clin Invest. 1983 Nov;72(5):1737–1747. doi: 10.1172/JCI111133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frayn K. N. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):628–634. doi: 10.1152/jappl.1983.55.2.628. [DOI] [PubMed] [Google Scholar]
  6. Hardie D. G. Regulation of fatty acid synthesis via phosphorylation of acetyl-CoA carboxylase. Prog Lipid Res. 1989;28(2):117–146. doi: 10.1016/0163-7827(89)90010-6. [DOI] [PubMed] [Google Scholar]
  7. Hargreaves M., Kiens B., Richter E. A. Effect of increased plasma free fatty acid concentrations on muscle metabolism in exercising men. J Appl Physiol (1985) 1991 Jan;70(1):194–201. doi: 10.1152/jappl.1991.70.1.194. [DOI] [PubMed] [Google Scholar]
  8. Idell-Wenger J. A., Grotyohann L. W., Neely J. R. Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem. 1978 Jun 25;253(12):4310–4318. [PubMed] [Google Scholar]
  9. King M. T., Reiss P. D., Cornell N. W. Determination of short-chain coenzyme A compounds by reversed-phase high-performance liquid chromatography. Methods Enzymol. 1988;166:70–79. doi: 10.1016/s0076-6879(88)66012-5. [DOI] [PubMed] [Google Scholar]
  10. Lopaschuk G. D., Belke D. D., Gamble J., Itoi T., Schönekess B. O. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta. 1994 Aug 4;1213(3):263–276. doi: 10.1016/0005-2760(94)00082-4. [DOI] [PubMed] [Google Scholar]
  11. McGarry J. D., Foster D. W. The metabolism of (minus)-octanoylcarnitine in perfused livers from fed and fasted rats. Evidence for a possible regulatory role of carnitine acyltransferase in the control of ketogenesis. J Biol Chem. 1974 Dec 25;249(24):7984–7990. [PubMed] [Google Scholar]
  12. McGarry J. D., Foster D. W. The regulation of ketogenesis from octanoic acid. The role of the tricarboxylic acid cycle and fatty acid synthesis. J Biol Chem. 1971 Feb 25;246(4):1149–1159. [PubMed] [Google Scholar]
  13. McGarry J. D., Mannaerts G. P., Foster D. W. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest. 1977 Jul;60(1):265–270. doi: 10.1172/JCI108764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McGarry J. D., Mills S. E., Long C. S., Foster D. W. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J. 1983 Jul 15;214(1):21–28. doi: 10.1042/bj2140021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McGarry J. D., Woeltje K. F., Kuwajima M., Foster D. W. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev. 1989 May;5(3):271–284. doi: 10.1002/dmr.5610050305. [DOI] [PubMed] [Google Scholar]
  16. RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
  17. Saddik M., Gamble J., Witters L. A., Lopaschuk G. D. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem. 1993 Dec 5;268(34):25836–25845. [PubMed] [Google Scholar]
  18. Saloranta C., Koivisto V., Widén E., Falholt K., DeFronzo R. A., Härkönen M., Groop L. Contribution of muscle and liver to glucose-fatty acid cycle in humans. Am J Physiol. 1993 Apr;264(4 Pt 1):E599–E605. doi: 10.1152/ajpendo.1993.264.4.E599. [DOI] [PubMed] [Google Scholar]
  19. Schoeller D. A., Klein P. D., Watkins J. B., Heim T., MacLean W. C., Jr 13C abundances of nutrients and the effect of variations in 13C isotopic abundances of test meals formulated for 13CO2 breath tests. Am J Clin Nutr. 1980 Nov;33(11):2375–2385. doi: 10.1093/ajcn/33.11.2375. [DOI] [PubMed] [Google Scholar]
  20. Sidossis L. S., Coggan A. R., Gastaldelli A., Wolfe R. R. A new correction factor for use in tracer estimations of plasma fatty acid oxidation. Am J Physiol. 1995 Oct;269(4 Pt 1):E649–E656. doi: 10.1152/ajpendo.1995.269.4.E649. [DOI] [PubMed] [Google Scholar]
  21. Sidossis L. S., Coggan A. R., Gastaldelli A., Wolfe R. R. Pathway of free fatty acid oxidation in human subjects. Implications for tracer studies. J Clin Invest. 1995 Jan;95(1):278–284. doi: 10.1172/JCI117652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sidossis L. S., Wolfe R. R. Glucose and insulin-induced inhibition of fatty acid oxidation: the glucose-fatty acid cycle reversed. Am J Physiol. 1996 Apr;270(4 Pt 1):E733–E738. doi: 10.1152/ajpendo.1996.270.4.E733. [DOI] [PubMed] [Google Scholar]
  23. Simonson D. C., DeFronzo R. A. Indirect calorimetry: methodological and interpretative problems. Am J Physiol. 1990 Mar;258(3 Pt 1):E399–E412. doi: 10.1152/ajpendo.1990.258.3.E399. [DOI] [PubMed] [Google Scholar]
  24. Wolfe B. M., Klein S., Peters E. J., Schmidt B. F., Wolfe R. R. Effect of elevated free fatty acids on glucose oxidation in normal humans. Metabolism. 1988 Apr;37(4):323–329. doi: 10.1016/0026-0495(88)90131-x. [DOI] [PubMed] [Google Scholar]
  25. Wolfe R. R., Peters E. J. Lipolytic response to glucose infusion in human subjects. Am J Physiol. 1987 Feb;252(2 Pt 1):E218–E223. doi: 10.1152/ajpendo.1987.252.2.E218. [DOI] [PubMed] [Google Scholar]
  26. Wolfe R. R., Shaw J. H., Nadel E. R., Wolfe M. H. Effect of substrate intake and physiological state on background 13CO2 enrichment. J Appl Physiol Respir Environ Exerc Physiol. 1984 Jan;56(1):230–234. doi: 10.1152/jappl.1984.56.1.230. [DOI] [PubMed] [Google Scholar]
  27. Yki-Järvinen H., Puhakainen I., Koivisto V. A. Effect of free fatty acids on glucose uptake and nonoxidative glycolysis across human forearm tissues in the basal state and during insulin stimulation. J Clin Endocrinol Metab. 1991 Jun;72(6):1268–1277. doi: 10.1210/jcem-72-6-1268. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES