Abstract
The effects of glucagon (G) on proximal tubule reabsorption (PTR) and GFR seem to depend on a prior action of this hormone on the liver resulting in the liberation of a mediator and/or of a compound derived from amino acid metabolism. This study investigates in anesthetized rats the possible contribution of cAMP and urea, alone and in combination with a low dose of G, on phosphate excretion (known to depend mostly on PTR) and GFR. After a 60-min control period, cAMP (5 nmol/min x 100 grams of body weight [BW]) or urea (2.5 micromol/min x 100 grams BW) was infused intravenously for 200 min with or without G (1.2 ng/min x 100 grams BW, a physiological dose which, alone, does not influence PTR or GFR). cAMP increased markedly the excretion of phosphate and sodium (+303 and +221%, respectively, P < 0.01 for each) but did not alter GFR. Coinfusion of cAMP and G induced the same tubular effects but also induced a 20% rise in GFR (P < 0.05). Infusion of urea, with or without G, did not induce significant effects on PTR or GFR. After G infusion at increasing doses, the increase in fractional excretion of phosphate was correlated with a simultaneous rise in plasma cAMP concentration and reached a maximum for doubling of plasma cAMP. These results suggest that cAMP, normally released by the liver into the blood under the action of G, (a) is probably an essential hepatorenal link regulating the intensity of PTR, and (b) contributes, in conjunction with specific effects of G on the nephron, to the regulation of GFR.
Full Text
The Full Text of this article is available as a PDF (197.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahloulay M., Bouby N., Machet F., Kubrusly M., Coutaud C., Bankir L. Effects of glucagon on glomerular filtration rate and urea and water excretion. Am J Physiol. 1992 Jul;263(1 Pt 2):F24–F36. doi: 10.1152/ajprenal.1992.263.1.F24. [DOI] [PubMed] [Google Scholar]
- Ahloulay M., Déchaux M., Laborde K., Bankir L. Influence of glucagon on GFR and on urea and electrolyte excretion: direct and indirect effects. Am J Physiol. 1995 Aug;269(2 Pt 2):F225–F235. doi: 10.1152/ajprenal.1995.269.2.F225. [DOI] [PubMed] [Google Scholar]
- Alvestrand A., Bergström J. Glomerular hyperfiltration after protein ingestion, during glucagon infusion, and in insulin-dependent diabetes is induced by a liver hormone: deficient production of this hormone in hepatic failure causes hepatorenal syndrome. Lancet. 1984 Jan 28;1(8370):195–197. doi: 10.1016/s0140-6736(84)92115-9. [DOI] [PubMed] [Google Scholar]
- Angielski S., Redlak M., Szczepańska-Konkel M. Intrarenal adenosine prevents hyperfiltration induced by atrial natriuretic factor. Miner Electrolyte Metab. 1990;16(1):57–60. [PubMed] [Google Scholar]
- Bailly C., Amiel C. Effect of glucagon on magnesium renal reabsorption in the rat. Pflugers Arch. 1982 Feb;392(4):360–365. doi: 10.1007/BF00581632. [DOI] [PubMed] [Google Scholar]
- Bailly C., Imbert-Teboul M., Chabardès D., Hus-Citharel A., Montégut M., Clique A., Morel F. The distal nephron of rat kidney: a target site for glucagon. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3422–3424. doi: 10.1073/pnas.77.6.3422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergström J., Ahlberg M., Alvestrand A. Influence of protein intake on renal hemodynamics and plasma hormone concentrations in normal subjects. Acta Med Scand. 1985;217(2):189–196. doi: 10.1111/j.0954-6820.1985.tb01655.x. [DOI] [PubMed] [Google Scholar]
- Bitensky M. W., Russell V., Robertson W. Evidence for separate epinephrine and glucagon responsive adenyl cyclase systems in rat liver. Biochem Biophys Res Commun. 1968 Jun 10;31(5):706–712. doi: 10.1016/0006-291x(68)90619-0. [DOI] [PubMed] [Google Scholar]
- Boden G., Tappy L., Jadali F., Hoeldtke R. D., Rezvani I., Owen O. E. Role of glucagon in disposal of an amino acid load. Am J Physiol. 1990 Aug;259(2 Pt 1):E225–E232. doi: 10.1152/ajpendo.1990.259.2.E225. [DOI] [PubMed] [Google Scholar]
- Boumendil-Podevin E. F., Podevin R. A. Transport and metabolism of adenosine 3':5'-monophosphate and N6, O2'-dibutyryl adenosine 3':5'-monophosphate by isolated renal tubules. J Biol Chem. 1977 Oct 10;252(19):6675–6681. [PubMed] [Google Scholar]
- Briffeuil P., Thu T. H., Kolanowski J. A lack of direct action of glucagon on kidney metabolism, hemodynamics, and renal sodium handling in the dog. Metabolism. 1996 Mar;45(3):383–388. doi: 10.1016/s0026-0495(96)90295-4. [DOI] [PubMed] [Google Scholar]
- Broadus A. E., Kaminsky N. I., Northcutt R. C., Hardman J. G., Sutherland E. W., Liddle G. W. Effects of glucagon on adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate in human plasma and urine. J Clin Invest. 1970 Dec;49(12):2237–2245. doi: 10.1172/JCI106442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butlen D., Jard S. Renal handling of 3'-5'-cyclic AMP in the rat. The possible role of luminal 3'-5'-cyclic AMP in the tubular reabsorption of phosphate. Pflugers Arch. 1972;331(2):172–190. doi: 10.1007/BF00587260. [DOI] [PubMed] [Google Scholar]
- Butlen D., Morel F. Glucagon receptors along the nephron: [125I]glucagon binding in rat tubules. Pflugers Arch. 1985 Aug;404(4):348–353. doi: 10.1007/BF00585347. [DOI] [PubMed] [Google Scholar]
- Castellino P., Giordano C., Perna A., DeFronzo R. A. Effects of plasma amino acid and hormone levels on renal hemodynamics in humans. Am J Physiol. 1988 Sep;255(3 Pt 2):F444–F449. doi: 10.1152/ajprenal.1988.255.3.F444. [DOI] [PubMed] [Google Scholar]
- Castellino P., Levin R., Shohat J., DeFronzo R. A. Effect of specific amino acid groups on renal hemodynamics in humans. Am J Physiol. 1990 Apr;258(4 Pt 2):F992–F997. doi: 10.1152/ajprenal.1990.258.4.F992. [DOI] [PubMed] [Google Scholar]
- Claris-Appiani A., Assael B. M., Tirelli A. S., Marra G., Cavanna G. Lack of glomerular hemodynamic stimulation after infusion of branched-chain amino acids. Kidney Int. 1988 Jan;33(1):91–94. doi: 10.1038/ki.1988.14. [DOI] [PubMed] [Google Scholar]
- Coulson R., Bowman R. H. Excretion and degradation of exogenous adenosine 3',5'-monophosphate by isolated perfused rat kidney. Life Sci. 1974 Feb 1;14(3):545–566. doi: 10.1016/0024-3205(74)90369-5. [DOI] [PubMed] [Google Scholar]
- Coulson R., Bowman R. H., Roch-Ramel F. The effects of nephrectomy and probenecid on in vivo clearance of adenosine-3',5'-monophosphate from rat plasma. Life Sci. 1974 Sep 1;15(5):877–886. doi: 10.1016/0024-3205(74)90004-6. [DOI] [PubMed] [Google Scholar]
- DeSanto N. G., Coppola S., Anastasio P., Coscarella G., Capasso G., Castellino P., De Mercato R., Bellini L., Strazzullo P., Guadagno P. Pancreatectomy abolishes the renal hemodynamic response to a meat meal in man. Nephron. 1990;55(1):85–86. doi: 10.1159/000185927. [DOI] [PubMed] [Google Scholar]
- Di Stefano A., Wittner M., Nitschke R., Braitsch R., Greger R., Bailly C., Amiel C., Elalouf J. M., Roinel N., de Rouffignac C. Effects of glucagon on Na+, Cl-, K+, Mg2+ and Ca2+ transports in cortical and medullary thick ascending limbs of mouse kidney. Pflugers Arch. 1989 Sep;414(6):640–646. doi: 10.1007/BF00582129. [DOI] [PubMed] [Google Scholar]
- ELRICK, SPRINGS V., STAUB A., STOLL F. A renal action of glucagon. Proc Soc Exp Biol Med. 1957 Jan;94(1):57–60. doi: 10.3181/00379727-94-22854. [DOI] [PubMed] [Google Scholar]
- Elalouf J. M., Roinel N., de Rouffignac C. Effects of glucagon and PTH on the loop of Henle of rat juxtamedullary nephrons. Kidney Int. 1986 Apr;29(4):807–813. doi: 10.1038/ki.1986.70. [DOI] [PubMed] [Google Scholar]
- Exton J. H., Lewis S. B., Ho R. J., Park C. R. The role of cyclic AMP in the control of hepatic glucose production by glucagon and insulin. Adv Cyclic Nucleotide Res. 1972;1:91–101. [PubMed] [Google Scholar]
- Exton J. H., Lewis S. B., Ho R. J., Robison G. A., Park C. R. The role of cyclic AMP in the interaction of glucagon and insulin in the control of liver metabolism. Ann N Y Acad Sci. 1971 Dec 30;185:85–100. doi: 10.1111/j.1749-6632.1971.tb45239.x. [DOI] [PubMed] [Google Scholar]
- FUHR J., KACZMARCZYK J., KRUTTGEN C. D. Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin Wochenschr. 1955 Aug 1;33(29-30):729–730. doi: 10.1007/BF01473295. [DOI] [PubMed] [Google Scholar]
- Friedlander G., Amiel C. Extracellular nucleotides as modulators of renal tubular transport. Kidney Int. 1995 Jun;47(6):1500–1506. doi: 10.1038/ki.1995.212. [DOI] [PubMed] [Google Scholar]
- Friedlander G., Blanchet-Benqué F., Nitenberg A., Laborie C., Assan R., Amiel C. Glucagon secretion is essential for aminoacid-induced hyperfiltration in man. Nephrol Dial Transplant. 1990;5(2):110–117. doi: 10.1093/ndt/5.2.110. [DOI] [PubMed] [Google Scholar]
- Friedlander G., Couette S., Coureau C., Amiel C. Mechanisms whereby extracellular adenosine 3',5'-monophosphate inhibits phosphate transport in cultured opossum kidney cells and in rat kidney. Physiological implication. J Clin Invest. 1992 Sep;90(3):848–858. doi: 10.1172/JCI115960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giordano M., Castellino P., McConnell E. L., DeFronzo R. A. Effect of amino acid infusion on renal hemodynamics in humans: a dose-response study. Am J Physiol. 1994 Nov;267(5 Pt 2):F703–F708. doi: 10.1152/ajprenal.1994.267.5.F703. [DOI] [PubMed] [Google Scholar]
- Hendy G. N., Tomlinson S., O'Riordan J. L. Impaired responsiveness to the effect of glucagon on plasma adenosine 3':5'-cyclic monophosphate in normal man. Eur J Clin Invest. 1977 Jun;7(3):155–160. doi: 10.1111/j.1365-2362.1977.tb01591.x. [DOI] [PubMed] [Google Scholar]
- Holst J. J. Glucagon--how to prove its role in amino acid metabolism. Eur J Clin Invest. 1983 Apr;13(2):107–108. doi: 10.1111/j.1365-2362.1983.tb00072.x. [DOI] [PubMed] [Google Scholar]
- Hoogenberg K., Dullaart R. P., Freling N. J., Meijer S., Sluiter W. J. Contributory roles of circulatory glucagon and growth hormone to increased renal haemodynamics in type 1 (insulin-dependent) diabetes mellitus. Scand J Clin Lab Invest. 1993 Dec;53(8):821–828. doi: 10.3109/00365519309086494. [DOI] [PubMed] [Google Scholar]
- Kuntziger H., Amiel C., Roinel N., Morel F. Effects of parathyroidectomy and cyclic AMP on renal transport of phosphate, calcium, and magnesium. Am J Physiol. 1974 Oct;227(4):905–911. doi: 10.1152/ajplegacy.1974.227.4.905. [DOI] [PubMed] [Google Scholar]
- Lang F., Häussinger D., Tschernko E., Capasso G., DeSanto N. G. Proteins, the liver and the kidney--hepatic regulation of renal function. Nephron. 1992;61(1):1–4. doi: 10.1159/000186825. [DOI] [PubMed] [Google Scholar]
- Lee K. E., Summerill R. A. Glomerular filtration rate following administration of individual amino acids in conscious dogs. Q J Exp Physiol. 1982 Jul;67(3):459–465. doi: 10.1113/expphysiol.1982.sp002661. [DOI] [PubMed] [Google Scholar]
- Levy M. Inability of glucagon to increase glomerular filtration rate in dogs with experimental cirrhosis and ascites. Can J Physiol Pharmacol. 1978 Jun;56(3):511–514. doi: 10.1139/y78-077. [DOI] [PubMed] [Google Scholar]
- Levy M., Starr N. L. The mechanism of glucagon-induced natriuresis in dogs. Kidney Int. 1972 Aug;2(2):76–84. doi: 10.1038/ki.1972.74. [DOI] [PubMed] [Google Scholar]
- Liljenquist J. E., Bomboy J. D., Lewis S. B., Sinclair-Smith B. C., Felts P. W., Lacy W. W., Crofford O. B., Liddle G. W. Effect of glucagon on net splanchnic cyclic AMP production in normal and diabetic men. J Clin Invest. 1974 Jan;53(1):198–204. doi: 10.1172/JCI107538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorentz W. B., Jr The effect of cyclic AMP and dibutyryl cyclic AMP on the permeability characteristics of the renal tubule. J Clin Invest. 1974 May;53(5):1250–1257. doi: 10.1172/JCI107671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meijer A. J., Lamers W. H., Chamuleau R. A. Nitrogen metabolism and ornithine cycle function. Physiol Rev. 1990 Jul;70(3):701–748. doi: 10.1152/physrev.1990.70.3.701. [DOI] [PubMed] [Google Scholar]
- Morel F., Doucet A. Hormonal control of kidney functions at the cell level. Physiol Rev. 1986 Apr;66(2):377–468. doi: 10.1152/physrev.1986.66.2.377. [DOI] [PubMed] [Google Scholar]
- Nammour T. M., Williams P. E., Badr K. F., Abumrad N. N., Jacobson H. R. The amino acid-induced alteration in renal hemodynamics is glucagon independent. J Am Soc Nephrol. 1991 Aug;2(2):164–171. doi: 10.1681/ASN.V22164. [DOI] [PubMed] [Google Scholar]
- O'Brian J. T., Saudek C. D., Spark R. F., Arky R. A. Glucagon induced refractoriness to exogenous mineralocorticoid. J Clin Endocrinol Metab. 1974 Jun;38(6):1147–1149. doi: 10.1210/jcem-38-6-1147. [DOI] [PubMed] [Google Scholar]
- O'Brien J. A., Strange R. C. The release of adenosine 3':5'-cyclic monophosphate from the isolated perfused rat heart. Biochem J. 1975 Nov;152(2):429–432. doi: 10.1042/bj1520429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park C. R., Lewis S. B., Exton J. H. Relationship of some hepatic actions of insulin to the intracellular level of cyclic adenylate. Diabetes. 1972;21(2 Suppl):439–446. doi: 10.2337/diab.21.2.s439. [DOI] [PubMed] [Google Scholar]
- Parrilla R., Goodman M. N., Toews C. J. Effect of glucagon: insulin ratios on hepatic metabolism. Diabetes. 1974 Sep;23(9):725–731. doi: 10.2337/diab.23.9.725. [DOI] [PubMed] [Google Scholar]
- Podevin R. A., Boumendil-Podevin E. F., Bujoli-Roche J., Priol C. Effects of probenecid on transport and metabolism of cyclic AMP by isolated rabbit renal tubules. Biochim Biophys Acta. 1980 Apr 17;629(1):135–142. doi: 10.1016/0304-4165(80)90272-x. [DOI] [PubMed] [Google Scholar]
- Podevin R. A., Boumendil-Podevin E. F. Inhibition by cyclic AMP and dibutyryl cyclic AMP of transport of organic acids in kidney cortex. Biochim Biophys Acta. 1975 Jan 14;375(1):106–114. doi: 10.1016/0005-2736(75)90075-9. [DOI] [PubMed] [Google Scholar]
- Premen A. J., Hall J. E., Smith M. J., Jr Postprandial regulation of renal hemodynamics: role of pancreatic glucagon. Am J Physiol. 1985 May;248(5 Pt 2):F656–F662. doi: 10.1152/ajprenal.1985.248.5.F656. [DOI] [PubMed] [Google Scholar]
- Premen A. J. Splanchnic and renal hemodynamic responses to intraportal infusion of glucagon. Am J Physiol. 1987 Dec;253(6 Pt 2):F1105–F1112. doi: 10.1152/ajprenal.1987.253.6.F1105. [DOI] [PubMed] [Google Scholar]
- Pullman T. N., Lavender A. R., Aho I. Direct effects of glucagon on renal hemodynamics and excretion of inorganic ions. Metabolism. 1967 Apr;16(4):358–373. doi: 10.1016/0026-0495(67)90047-9. [DOI] [PubMed] [Google Scholar]
- Seitz H. J., Müller M. J., Nordmeyer P., Krone W., Tarnowski W. Concentration of cyclic AMP in rat liver as a function of the insulin/glucagon ratio in blood under standardized physiological conditions. Endocrinology. 1976 Nov;99(5):1313–1318. doi: 10.1210/endo-99-5-1313. [DOI] [PubMed] [Google Scholar]
- Spark R. F., Arky R. A., Boulter P. R., Saudek C. D., O'Brian J. T. Renin, aldosterone and glucagon in the natriuresis of fasting. N Engl J Med. 1975 Jun 19;292(25):1335–1340. doi: 10.1056/NEJM197506192922506. [DOI] [PubMed] [Google Scholar]
- Strange R. C., Mjos O. D. The sources of plasma cyclic AMP: studies in the rat using isoprenaline, nicotinic acid and glucagon. Eur J Clin Invest. 1975 Apr;5(2):147–152. doi: 10.1111/j.1365-2362.1975.tb00440.x. [DOI] [PubMed] [Google Scholar]
- Strewler G. J. Release of cAMP from a renal epithelial cell line. Am J Physiol. 1984 Mar;246(3 Pt 1):C224–C230. doi: 10.1152/ajpcell.1984.246.3.C224. [DOI] [PubMed] [Google Scholar]
- Søvik O., Heiervang E., Aksnes L., Selvig S. Responses of plasma adenosine 3',5'-monophosphate, blood glucose and plasma insulin to glucagon in humans. Scand J Clin Lab Invest. 1981 Nov;41(7):669–674. doi: 10.3109/00365518109090513. [DOI] [PubMed] [Google Scholar]
- Tolins J. P. Mechanisms of glucagon-induced renal vasodilation: role of prostaglandins and endothelium-derived relaxing factor. J Lab Clin Med. 1992 Dec;120(6):941–948. [PubMed] [Google Scholar]
- Unger R. H., Orci L. The essential role of glucagon in the pathogenesis of diabetes mellitus. Lancet. 1975 Jan 4;1(7897):14–16. doi: 10.1016/s0140-6736(75)92375-2. [DOI] [PubMed] [Google Scholar]
- Uranga J., Fuenzalida R., Rapoport A. L., del Castillo E. Effect of glucagon and glomerulopressin on the renal function of the dog. Horm Metab Res. 1979 Apr;11(4):275–279. doi: 10.1055/s-0028-1092722. [DOI] [PubMed] [Google Scholar]
- Wada L., Don B. R., Schambelan M. Hormonal mediators of amino acid-induced glomerular hyperfiltration in humans. Am J Physiol. 1991 Jun;260(6 Pt 2):F787–F792. doi: 10.1152/ajprenal.1991.260.6.F787. [DOI] [PubMed] [Google Scholar]
- Woods L. L., DeYoung D. R., Smith B. E. Regulation of renal hemodynamics after protein feeding: effects of loop diuretics. Am J Physiol. 1991 Nov;261(5 Pt 2):F815–F823. doi: 10.1152/ajprenal.1991.261.5.F815. [DOI] [PubMed] [Google Scholar]
- Woods L. L. Mechanisms of renal hemodynamic regulation in response to protein feeding. Kidney Int. 1993 Oct;44(4):659–675. doi: 10.1038/ki.1993.299. [DOI] [PubMed] [Google Scholar]
- Woods L. L., Smith B. E., De Young D. R. Regulation of renal hemodynamics after protein feeding: effects of proximal and distal diuretics. Am J Physiol. 1993 Feb;264(2 Pt 2):R337–R344. doi: 10.1152/ajpregu.1993.264.2.R337. [DOI] [PubMed] [Google Scholar]
- Zenser T. V., Davis B. B. Mechanism of inhibition of organic acid transport in rabbit renal cortex by cyclic AMP. Metabolism. 1976 Oct;25(10):1137–1142. doi: 10.1016/0026-0495(76)90021-4. [DOI] [PubMed] [Google Scholar]
- de Rouffignac C., Elalouf J. M., Roinel N. Glucagon inhibits water and NaCl transports in the proximal convoluted tubule of the rat kidney. Pflugers Arch. 1991 Nov;419(5):472–477. doi: 10.1007/BF00370791. [DOI] [PubMed] [Google Scholar]
