Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Nov 15;98(10):2300–2307. doi: 10.1172/JCI119041

Combination of two mutant alpha spectrin alleles underlies a severe spherocytic hemolytic anemia.

H Wichterle 1, M Hanspal 1, J Palek 1, P Jarolim 1
PMCID: PMC507680  PMID: 8941647

Abstract

We studied a patient with a severe spherocytic hemolytic anemia without family history of spherocytosis. Analysis of patient's erythrocyte membrane proteins revealed spectrin deficiency and a truncated alpha spectrin protein. We determined that the patient is a compound heterozygote with two mutations in alpha spectrin gene. Mutation in the paternal allele, designated alpha spectrin(PRAGUE), is a transition A to G in the penultimate position of intron 36 that leads to skipping of exon 37, frameshift, and production of the truncated alpha spectrin protein. The maternal allele, designated alpha spectrin(LEPRA), contains transition C-->T in position -99 of intron 30. This mutation enhances an alternative acceptor splice site 70 nucleotides upstream from the regular site. The alternative splicing causes a frameshift and premature termination of translation leading to a significant decrease in alpha spectrin production. The alpha(LEPRA) mutation is linked to a spectrin alphaIIa marker that was found to be associated with recessive or nondominant spectrin-deficient hereditary spherocytosis in approximately 50% of studied families. We conclude that the alpha(LEPRA) mutation combined in trans with the alpha(PRAGUE) mutation underlie the severe hemolytic anemia in the proband. We suggest that allele alpha spectrin(LEPRA) may be frequently involved in pathogenesis of recessive or nondominant spectrin-deficient hereditary spherocytosis.

Full Text

The Full Text of this article is available as a PDF (320.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agre P., Casella J. F., Zinkham W. H., McMillan C., Bennett V. Partial deficiency of erythrocyte spectrin in hereditary spherocytosis. 1985 Mar 28-Apr 3Nature. 314(6009):380–383. doi: 10.1038/314380a0. [DOI] [PubMed] [Google Scholar]
  2. Agre P., Orringer E. P., Bennett V. Deficient red-cell spectrin in severe, recessively inherited spherocytosis. N Engl J Med. 1982 May 13;306(19):1155–1161. doi: 10.1056/NEJM198205133061906. [DOI] [PubMed] [Google Scholar]
  3. Alloisio N., Wilmotte R., Maréchal J., Texier P., Denoroy L., Féo C., Benhadji-Zouaoui Z., Delaunay J. A splice site mutation of alpha-spectrin gene causing skipping of exon 18 in hereditary elliptocytosis. Blood. 1993 May 15;81(10):2791–2798. [PubMed] [Google Scholar]
  4. Baklouti F., Maréchal J., Wilmotte R., Alloisio N., Morlé L., Ducluzeau M. T., Denoroy L., Mrad A., Ben Aribia M. H., Kastally R. Elliptocytogenic alpha I/36 spectrin Sfax lacks nine amino acids in helix 3 of repeat 4. Evidence for the activation of a cryptic 5'-splice site in exon 8 of spectrin alpha-gene. Blood. 1992 May 1;79(9):2464–2470. [PubMed] [Google Scholar]
  5. Becker P. S., Tse W. T., Lux S. E., Forget B. G. Beta spectrin kissimmee: a spectrin variant associated with autosomal dominant hereditary spherocytosis and defective binding to protein 4.1. J Clin Invest. 1993 Aug;92(2):612–616. doi: 10.1172/JCI116628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boivin P., Galand C., Devaux I., Lecomte M. C., Garbarz M., Dhermy D. Spectrin alpha IIa variant in dominant and non-dominant spherocytosis. Hum Genet. 1993 Sep;92(2):153–156. doi: 10.1007/BF00219683. [DOI] [PubMed] [Google Scholar]
  7. Bouhassira E. E., Schwartz R. S., Yawata Y., Ata K., Kanzaki A., Qiu J. J., Nagel R. L., Rybicki A. C. An alanine-to-threonine substitution in protein 4.2 cDNA is associated with a Japanese form of hereditary hemolytic anemia (protein 4.2NIPPON). Blood. 1992 Apr 1;79(7):1846–1854. [PubMed] [Google Scholar]
  8. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  9. Eber S. W., Gonzalez J. M., Lux M. L., Scarpa A. L., Tse W. T., Dornwell M., Herbers J., Kugler W., Ozcan R., Pekrun A. Ankyrin-1 mutations are a major cause of dominant and recessive hereditary spherocytosis. Nat Genet. 1996 Jun;13(2):214–218. doi: 10.1038/ng0696-214. [DOI] [PubMed] [Google Scholar]
  10. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  11. Gallagher P. G., Forget B. G. Spectrin genes in health and disease. Semin Hematol. 1993 Jan;30(1):4–20. [PubMed] [Google Scholar]
  12. Gallagher P. G., Tse W. T., Costa F., Scarpa A., Boivin P., Delaunay J., Forget B. G. A splice site mutation of the beta-spectrin gene causing exon skipping in hereditary elliptocytosis associated with a truncated beta-spectrin chain. J Biol Chem. 1991 Aug 15;266(23):15154–15159. [PubMed] [Google Scholar]
  13. Goossens M., Kan Y. Y. DNA analysis in the diagnosis of hemoglobin disorders. Methods Enzymol. 1981;76:805–817. doi: 10.1016/0076-6879(81)76159-7. [DOI] [PubMed] [Google Scholar]
  14. Hanspal M., Hanspal J. S., Kalraiya R., Liu S. C., Sahr K. E., Howard D., Palek J. Asynchronous synthesis of membrane skeletal proteins during terminal maturation of murine erythroblasts. Blood. 1992 Jul 15;80(2):530–539. [PubMed] [Google Scholar]
  15. Hanspal M., Hanspal J. S., Sahr K. E., Fibach E., Nachman J., Palek J. Molecular basis of spectrin deficiency in hereditary pyropoikilocytosis. Blood. 1993 Sep 1;82(5):1652–1660. [PubMed] [Google Scholar]
  16. Hanspal M., Palek J. Synthesis and assembly of membrane skeletal proteins in mammalian red cell precursors. J Cell Biol. 1987 Sep;105(3):1417–1424. doi: 10.1083/jcb.105.3.1417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hassoun H., Vassiliadis J. N., Murray J., Yi S. J., Hanspal M., Johnson C. A., Palek J. Hereditary spherocytosis with spectrin deficiency due to an unstable truncated beta spectrin. Blood. 1996 Mar 15;87(6):2538–2545. [PubMed] [Google Scholar]
  18. Hassoun H., Vassiliadis J. N., Murray J., Yi S. J., Hanspal M., Ware R. E., Winter S. S., Chiou S. S., Palek J. Molecular basis of spectrin deficiency in beta spectrin Durham. A deletion within beta spectrin adjacent to the ankyrin-binding site precludes spectrin attachment to the membrane in hereditary spherocytosis. J Clin Invest. 1995 Dec;96(6):2623–2629. doi: 10.1172/JCI118327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hayette S., Dhermy D., dos Santos M. E., Bozon M., Drenckhahn D., Alloisio N., Texier P., Delaunay J., Morlé L. A deletional frameshift mutation in protein 4.2 gene (allele 4.2 Lisboa) associated with hereditary hemolytic anemia. Blood. 1995 Jan 1;85(1):250–256. [PubMed] [Google Scholar]
  20. Hayette S., Morle L., Bozon M., Ghanem A., Risinger M., Korsgren C., Tanner M. J., Fattoum S., Cohen C. M., Delaunay J. A point mutation in the protein 4.2 gene (allele 4.2 Tozeur) associated with hereditary haemolytic anaemia. Br J Haematol. 1995 Apr;89(4):762–770. doi: 10.1111/j.1365-2141.1995.tb08413.x. [DOI] [PubMed] [Google Scholar]
  21. Hennig E. E., Conney A. H., Wei S. J. Characterization of hprt splicing mutations induced by the ultimate carcinogenic metabolite of benzo[a]pyrene in Chinese hamster V-79 cells. Cancer Res. 1995 Apr 1;55(7):1550–1558. [PubMed] [Google Scholar]
  22. Jarolim P., Palek J., Rubin H. L., Prchal J. T., Korsgren C., Cohen C. M. Band 3 Tuscaloosa: Pro327----Arg327 substitution in the cytoplasmic domain of erythrocyte band 3 protein associated with spherocytic hemolytic anemia and partial deficiency of protein 4.2. Blood. 1992 Jul 15;80(2):523–529. [PubMed] [Google Scholar]
  23. Jarolim P., Rubin H. L., Brabec V., Chrobak L., Zolotarev A. S., Alper S. L., Brugnara C., Wichterle H., Palek J. Mutations of conserved arginines in the membrane domain of erythroid band 3 lead to a decrease in membrane-associated band 3 and to the phenotype of hereditary spherocytosis. Blood. 1995 Feb 1;85(3):634–640. [PubMed] [Google Scholar]
  24. Jarolim P., Rubin H. L., Brabec V., Palek J. A nonsense mutation 1669Glu-->Ter within the regulatory domain of human erythroid ankyrin leads to a selective deficiency of the major ankyrin isoform (band 2.1) and a phenotype of autosomal dominant hereditary spherocytosis. J Clin Invest. 1995 Mar;95(3):941–947. doi: 10.1172/JCI117802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jarolim P., Rubin H. L., Liu S. C., Cho M. R., Brabec V., Derick L. H., Yi S. J., Saad S. T., Alper S., Brugnara C. Duplication of 10 nucleotides in the erythroid band 3 (AE1) gene in a kindred with hereditary spherocytosis and band 3 protein deficiency (band 3PRAGUE). J Clin Invest. 1994 Jan;93(1):121–130. doi: 10.1172/JCI116935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jarolim P., Wichterle H., Hanspal M., Murray J., Rubin H. L., Palek J. Beta spectrin PRAGUE: a truncated beta spectrin producing spectrin deficiency, defective spectrin heterodimer self-association and a phenotype of spherocytic elliptocytosis. Br J Haematol. 1995 Oct;91(2):502–510. doi: 10.1111/j.1365-2141.1995.tb05330.x. [DOI] [PubMed] [Google Scholar]
  27. Jenkins P. B., Abou-Alfa G. K., Dhermy D., Bursaux E., Féo C., Scarpa A. L., Lux S. E., Garbarz M., Forget B. G., Gallagher P. G. A nonsense mutation in the erythrocyte band 3 gene associated with decreased mRNA accumulation in a kindred with dominant hereditary spherocytosis. J Clin Invest. 1996 Jan 15;97(2):373–380. doi: 10.1172/JCI118425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jennings L. K., Brown L. K., Dockter M. E. Quantitation of protein 3 content of circulating erythrocytes at the single-cell level. Blood. 1985 May;65(5):1256–1262. [PubMed] [Google Scholar]
  29. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  30. Liu S. C., Palek J., Prchal J., Castleberry R. P. Altered spectrin dimer-dimer association and instability of erythrocyte membrane skeletons in hereditary pyropoikilocytosis. J Clin Invest. 1981 Sep;68(3):597–605. doi: 10.1172/JCI110293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lux S. E., Tse W. T., Menninger J. C., John K. M., Harris P., Shalev O., Chilcote R. R., Marchesi S. L., Watkins P. C., Bennett V. Hereditary spherocytosis associated with deletion of human erythrocyte ankyrin gene on chromosome 8. Nature. 1990 Jun 21;345(6277):736–739. doi: 10.1038/345736a0. [DOI] [PubMed] [Google Scholar]
  32. Maillet P., Vallier A., Reinhart W. H., Wyss E. J., Ott P., Texier P., Baklouti F., Tanner M. J., Delaunay J., Alloisio N. Band 3 Chur: a variant associated with band 3-deficient hereditary spherocytosis and substitution in a highly conserved position of transmembrane segment 11. Br J Haematol. 1995 Dec;91(4):804–810. doi: 10.1111/j.1365-2141.1995.tb05393.x. [DOI] [PubMed] [Google Scholar]
  33. Matsuda M., Hatano N., Ideguchi H., Takahira H., Fukumaki Y. A novel mutation causing an aberrant splicing in the protein 4.2 gene associated with hereditary spherocytosis (protein 4.2Notame). Hum Mol Genet. 1995 Jul;4(7):1187–1191. doi: 10.1093/hmg/4.7.1187. [DOI] [PubMed] [Google Scholar]
  34. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2766–2770. doi: 10.1073/pnas.86.8.2766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rybicki A. C., Qiu J. J., Musto S., Rosen N. L., Nagel R. L., Schwartz R. S. Human erythrocyte protein 4.2 deficiency associated with hemolytic anemia and a homozygous 40glutamic acid-->lysine substitution in the cytoplasmic domain of band 3 (band 3Montefiore). Blood. 1993 Apr 15;81(8):2155–2165. [PubMed] [Google Scholar]
  37. Sahr K. E., Tobe T., Scarpa A., Laughinghouse K., Marchesi S. L., Agre P., Linnenbach A. J., Marchesi V. T., Forget B. G. Sequence and exon-intron organization of the DNA encoding the alpha I domain of human spectrin. Application to the study of mutations causing hereditary elliptocytosis. J Clin Invest. 1989 Oct;84(4):1243–1252. doi: 10.1172/JCI114291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Speicher D. W., Weglarz L., DeSilva T. M. Properties of human red cell spectrin heterodimer (side-to-side) assembly and identification of an essential nucleation site. J Biol Chem. 1992 Jul 25;267(21):14775–14782. [PubMed] [Google Scholar]
  39. Sykes B. C. DNA in heritable disease. Lancet. 1983 Oct 1;2(8353):787–788. doi: 10.1016/s0140-6736(83)92314-0. [DOI] [PubMed] [Google Scholar]
  40. Takaoka Y., Ideguchi H., Matsuda M., Sakamoto N., Takeuchi T., Fukumaki Y. A novel mutation in the erythrocyte protein 4.2 gene of Japanese patients with hereditary spherocytosis (protein 4.2 Fukuoka). Br J Haematol. 1994 Nov;88(3):527–533. doi: 10.1111/j.1365-2141.1994.tb05069.x. [DOI] [PubMed] [Google Scholar]
  41. Whitfield C. F., Follweiler J. B., Lopresti-Morrow L., Miller B. A. Deficiency of alpha-spectrin synthesis in burst-forming units-erythroid in lethal hereditary spherocytosis. Blood. 1991 Dec 1;78(11):3043–3051. [PubMed] [Google Scholar]
  42. Wilmotte R., Maréchal J., Morlé L., Baklouti F., Philippe N., Kastally R., Kotula L., Delaunay J., Alloisio N. Low expression allele alpha LELY of red cell spectrin is associated with mutations in exon 40 (alpha V/41 polymorphism) and intron 45 and with partial skipping of exon 46. J Clin Invest. 1993 May;91(5):2091–2096. doi: 10.1172/JCI116432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Woods C. M., Lazarides E. Degradation of unassembled alpha- and beta-spectrin by distinct intracellular pathways: regulation of spectrin topogenesis by beta-spectrin degradation. Cell. 1985 Apr;40(4):959–969. doi: 10.1016/0092-8674(85)90356-3. [DOI] [PubMed] [Google Scholar]
  44. Woods C. M., Lazarides E. Spectrin assembly in avian erythroid development is determined by competing reactions of subunit homo- and hetero-oligomerization. Nature. 1986 May 1;321(6065):85–89. doi: 10.1038/321085a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES