Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Nov 15;98(10):2358–2363. doi: 10.1172/JCI119048

Association of arthrogryposis multiplex congenita with maternal antibodies inhibiting fetal acetylcholine receptor function.

S Riemersma 1, A Vincent 1, D Beeson 1, C Newland 1, S Hawke 1, B Vernet-der Garabedian 1, B Eymard 1, J Newsom-Davis 1
PMCID: PMC507687  PMID: 8941654

Abstract

Arthrogryposis multiplex congenita (AMC), characterized by multiple joint contractures developing in utero, results from lack of fetal movement. Some cases are genetically determined, but AMC occasionally complicates pregnancy in patients with myasthenia gravis (MG) suggesting involvement of circulating maternal antibodies. We previously demonstrated antibodies that inhibited the function of fetal acetylcholine receptor (AChR) in one healthy woman with an obstetric history of recurrent AMC. Here we study sera from this woman, from one other with a similar history, and from three (one asymptomatic) whose babies had neonatal MG and AMC. All five maternal sera had high titers of antibodies that inhibited alpha-Bungarotoxin (alpha-BuTx) binding to fetal AChR, and their sera markedly inhibited fetal AChR function with little effect on adult AChR function. Moreover, in a further survey, 3 of 20 sera from anti-AChR negative AMC mothers inhibited fetal AChR function significantly at 1:100 dilution. These results demonstrate the role of antibodies to fetal AChR and perhaps other muscle antigens in some cases of AMC. More generally, they suggest that placental transfer of antibodies directed at fetal antigens should be considered as a cause of other recurrent fetal or perinatal disorders.

Full Text

The Full Text of this article is available as a PDF (178.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes P. R., Kanabar D. J., Brueton L., Newsom-Davis J., Huson S. M., Mann N. P., Hilton-Jones D. Recurrent congenital arthrogryposis leading to a diagnosis of myasthenia gravis in an initially asymptomatic mother. Neuromuscul Disord. 1995 Jan;5(1):59–65. doi: 10.1016/0960-8966(94)e0029-8. [DOI] [PubMed] [Google Scholar]
  2. Barrett-Jolley R., Byrne N., Vincent A., Newsom-Davis J. Plasma from patients with seronegative myasthenia gravis inhibit nAChR responses in the TE671/RD cell line. Pflugers Arch. 1994 Oct;428(5-6):492–498. doi: 10.1007/BF00374570. [DOI] [PubMed] [Google Scholar]
  3. Beeson D., Amar M., Bermudez I., Vincent A., Newsom-Davis J. Stable functional expression of the adult subtype of human muscle acetylcholine receptor following transfection of the human rhabdomyosarcoma cell line TE671 with cDNA encoding the epsilon subunit. Neurosci Lett. 1996 Mar 22;207(1):57–60. doi: 10.1016/0304-3940(96)12488-5. [DOI] [PubMed] [Google Scholar]
  4. Burges J., Wray D. W., Pizzighella S., Hall Z., Vincent A. A myasthenia gravis plasma immunoglobulin reduces miniature endplate potentials at human endplates in vitro. Muscle Nerve. 1990 May;13(5):407–413. doi: 10.1002/mus.880130507. [DOI] [PubMed] [Google Scholar]
  5. Dinger J., Prager B. Arthrogryposis multiplex in a newborn of a myasthenic mother--case report and literature. Neuromuscul Disord. 1993 Jul;3(4):335–339. doi: 10.1016/0960-8966(93)90027-h. [DOI] [PubMed] [Google Scholar]
  6. Dowding A. J., Hall Z. W. Monoclonal antibodies specific for each of the two toxin-binding sites of Torpedo acetylcholine receptor. Biochemistry. 1987 Oct 6;26(20):6372–6381. doi: 10.1021/bi00394a010. [DOI] [PubMed] [Google Scholar]
  7. Drachman D. B. Myasthenia gravis. N Engl J Med. 1994 Jun 23;330(25):1797–1810. doi: 10.1056/NEJM199406233302507. [DOI] [PubMed] [Google Scholar]
  8. Guzman-Enriquez L., Avalos-Diaz E., Herrera-Esparza R. Transplacental transfer of human antinuclear antibodies in mice by injection of lupus IgG in pregnant animals. J Rheumatol. 1990 Jan;17(1):52–56. [PubMed] [Google Scholar]
  9. Hall J. G., Reed S. D., Greene G. The distal arthrogryposes: delineation of new entities--review and nosologic discussion. Am J Med Genet. 1982 Feb;11(2):185–239. doi: 10.1002/ajmg.1320110208. [DOI] [PubMed] [Google Scholar]
  10. Hall Z. W., Pizzighella S., Gu Y., Vicini S., Schuetze S. M. Functional inhibition of acetylcholine receptors by antibodies in myasthenic sera. Ann N Y Acad Sci. 1987;505:272–285. doi: 10.1111/j.1749-6632.1987.tb51296.x. [DOI] [PubMed] [Google Scholar]
  11. Hesselmans L. F., Jennekens F. G., Van den Oord C. J., Veldman H., Vincent A. Development of innervation of skeletal muscle fibers in man: relation to acetylcholine receptors. Anat Rec. 1993 Jul;236(3):553–562. doi: 10.1002/ar.1092360315. [DOI] [PubMed] [Google Scholar]
  12. Horton R. M., Manfredi A. A., Conti-Tronconi B. M. The 'embryonic' gamma subunit of the nicotinic acetylcholine receptor is expressed in adult extraocular muscle. Neurology. 1993 May;43(5):983–986. doi: 10.1212/wnl.43.5.983. [DOI] [PubMed] [Google Scholar]
  13. Jago R. H. Arthrogryposis following treatment of maternal tetanus with muscle relaxants. Arch Dis Child. 1970 Apr;45(240):277–279. doi: 10.1136/adc.45.240.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaminski H. J., Maas E., Spiegel P., Ruff R. L. Why are eye muscles frequently involved in myasthenia gravis? Neurology. 1990 Nov;40(11):1663–1669. doi: 10.1212/wnl.40.11.1663. [DOI] [PubMed] [Google Scholar]
  15. Karlin A., Akabas M. H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron. 1995 Dec;15(6):1231–1244. doi: 10.1016/0896-6273(95)90004-7. [DOI] [PubMed] [Google Scholar]
  16. Lang B., Richardson G., Rees J., Vincent A., Newsom-Davis J. Plasma from myasthenia gravis patients reduces acetylcholine receptor agonist-induced Na+ flux into TE671 cell line. J Neuroimmunol. 1988 Aug;19(1-2):141–148. doi: 10.1016/0165-5728(88)90043-4. [DOI] [PubMed] [Google Scholar]
  17. Lang B., Vincent A., Newsom-Davis J. Purification of anti-acetylcholine receptor antibody from patients with myasthenia gravis. J Immunol Methods. 1982;51(3):371–381. doi: 10.1016/0022-1759(82)90405-7. [DOI] [PubMed] [Google Scholar]
  18. Morel E., Eymard B., Vernet-der Garabedian B., Pannier C., Dulac O., Bach J. F. Neonatal myasthenia gravis: a new clinical and immunologic appraisal on 30 cases. Neurology. 1988 Jan;38(1):138–142. doi: 10.1212/wnl.38.1.138. [DOI] [PubMed] [Google Scholar]
  19. Newland C. F., Beeson D., Vincent A., Newsom-Davis J. Functional and non-functional isoforms of the human muscle acetylcholine receptor. J Physiol. 1995 Dec 15;489(Pt 3):767–778. doi: 10.1113/jphysiol.1995.sp021090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Olson N. Y., Lindsley C. B. Neonatal lupus syndrome. Am J Dis Child. 1987 Aug;141(8):908–910. doi: 10.1001/archpedi.1987.04460080094037. [DOI] [PubMed] [Google Scholar]
  21. Schluep M., Willcox N., Vincent A., Dhoot G. K., Newsom-Davis J. Acetylcholine receptors in human thymic myoid cells in situ: an immunohistological study. Ann Neurol. 1987 Aug;22(2):212–222. doi: 10.1002/ana.410220205. [DOI] [PubMed] [Google Scholar]
  22. Vernet-der Garabedian B., Lacokova M., Eymard B., Morel E., Faltin M., Zajac J., Sadovsky O., Dommergues M., Tripon P., Bach J. F. Association of neonatal myasthenia gravis with antibodies against the fetal acetylcholine receptor. J Clin Invest. 1994 Aug;94(2):555–559. doi: 10.1172/JCI117369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vincent A., Newland C., Brueton L., Beeson D., Riemersma S., Huson S. M., Newsom-Davis J. Arthrogryposis multiplex congenita with maternal autoantibodies specific for a fetal antigen. Lancet. 1995 Jul 1;346(8966):24–25. doi: 10.1016/s0140-6736(95)92652-6. [DOI] [PubMed] [Google Scholar]
  24. Vincent A., Newsom-Davis J. Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis: results in 153 validated cases and 2967 diagnostic assays. J Neurol Neurosurg Psychiatry. 1985 Dec;48(12):1246–1252. doi: 10.1136/jnnp.48.12.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vincent A., Newsom-Davis J. Acetylcholine receptor antibody characteristics in myasthenia gravis. I. Patients with generalized myasthenia or disease restricted to ocular muscles. Clin Exp Immunol. 1982 Aug;49(2):257–265. [PMC free article] [PubMed] [Google Scholar]
  26. Weinberg C. B., Hall Z. W. Antibodies from patients with myasthenia gravis recognize determinants unique to extrajunctional acetylcholine receptors. Proc Natl Acad Sci U S A. 1979 Jan;76(1):504–508. doi: 10.1073/pnas.76.1.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Whiting P. J., Vincent A., Schluep M., Newsom-Davis J. Monoclonal antibodies that distinguish between normal and denervated human acetylcholine receptor. J Neuroimmunol. 1986 May;11(3):223–235. doi: 10.1016/0165-5728(86)90006-8. [DOI] [PubMed] [Google Scholar]
  28. Yamamoto T., Vincent A., Ciulla T. A., Lang B., Johnston I., Newsom-Davis J. Seronegative myasthenia gravis: a plasma factor inhibiting agonist-induced acetylcholine receptor function copurifies with IgM. Ann Neurol. 1991 Oct;30(4):550–557. doi: 10.1002/ana.410300407. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES