Abstract
Chronic metabolic acidosis increases proximal tubular citrate uptake and metabolism. The present study addressed the effect of chronic metabolic acidosis on a cytosolic enzyme of citrate metabolism, ATP citrate lyase. Chronic metabolic acidosis caused hypocitraturia in rats and increased renal cortical ATP citrate lyase activity by 67% after 7 d. Renal cortical ATP citrate lyase protein abundance increased by 29% after 3 d and by 141% after 7 d of acid diet. No significant change in mRNA abundance could be detected. Hypokalemia, which causes only intracellular acidosis, caused hypocitraturia and increased renal cortical ATP citrate lyase activity by 28%. Conversely, the hypercitraturia of chronic alkali feeding was associated with no change in ATP citrate lyase activity. Inhibition of ATP citrate lyase with the competitive inhibitor, 4S-hydroxycitrate, significantly abated hypocitraturia and increased urinary citrate excretion fourfold in chronic metabolic acidosis and threefold in K+-depletion. In summary, the hypocitraturia of chronic metabolic acidosis is associated with an increase in ATP citrate lyase activity and protein abundance, and is partly reversed by inhibition of this enzyme. These results suggest an important role for ATP citrate lyase in proximal tubular citrate metabolism.
Full Text
The Full Text of this article is available as a PDF (266.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adam W. R., Koretsky A. P., Weiner M. W. 31P-NMR in vivo measurement of renal intracellular pH: effects of acidosis and K+ depletion in rats. Am J Physiol. 1986 Nov;251(5 Pt 2):F904–F910. doi: 10.1152/ajprenal.1986.251.5.F904. [DOI] [PubMed] [Google Scholar]
- Adler S., Zett B., Anderson B. Renal citrate in the potassium-deficient rat: role of potassium and chloride ions. J Lab Clin Med. 1974 Sep;84(3):307–316. [PubMed] [Google Scholar]
- Alleyne G. A., Scullard G. H. Renal metabolic response to acid base changes. I. Enzymatic control of ammoniagenesis in the rat. J Clin Invest. 1969 Feb;48(2):364–370. doi: 10.1172/JCI105993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ambühl P. M., Amemiya M., Danczkay M., Lötscher M., Kaissling B., Moe O. W., Preisig P. A., Alpern R. J. Chronic metabolic acidosis increases NHE3 protein abundance in rat kidney. Am J Physiol. 1996 Oct;271(4 Pt 2):F917–F925. doi: 10.1152/ajprenal.1996.271.4.F917. [DOI] [PubMed] [Google Scholar]
- Breslau N. A., Brinkley L., Hill K. D., Pak C. Y. Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism. J Clin Endocrinol Metab. 1988 Jan;66(1):140–146. doi: 10.1210/jcem-66-1-140. [DOI] [PubMed] [Google Scholar]
- Cheema-Dhadli S., Halperin M. L., Leznoff C. C. Inhibition of enzymes which interact with citrate by (--)hydroxycitrate and 1,2,3,-tricarboxybenzene. Eur J Biochem. 1973 Sep 21;38(1):98–102. doi: 10.1111/j.1432-1033.1973.tb03038.x. [DOI] [PubMed] [Google Scholar]
- Cottam G. L., Srere P. A. The sulfhydryl groups of citrate cleavage enzyme. Arch Biochem Biophys. 1969 Mar;130(1):304–311. doi: 10.1016/0003-9861(69)90037-x. [DOI] [PubMed] [Google Scholar]
- Des Rosiers C., Di Donato L., Comte B., Laplante A., Marcoux C., David F., Fernandez C. A., Brunengraber H. Isotopomer analysis of citric acid cycle and gluconeogenesis in rat liver. Reversibility of isocitrate dehydrogenase and involvement of ATP-citrate lyase in gluconeogenesis. J Biol Chem. 1995 Apr 28;270(17):10027–10036. doi: 10.1074/jbc.270.17.10027. [DOI] [PubMed] [Google Scholar]
- Elshourbagy N. A., Near J. C., Kmetz P. J., Sathe G. M., Southan C., Strickler J. E., Gross M., Young J. F., Wells T. N., Groot P. H. Rat ATP citrate-lyase. Molecular cloning and sequence analysis of a full-length cDNA and mRNA abundance as a function of diet, organ, and age. J Biol Chem. 1990 Jan 25;265(3):1430–1435. [PubMed] [Google Scholar]
- Geibel J., Giebisch G., Boron W. F. Angiotensin II stimulates both Na(+)-H+ exchange and Na+/HCO3- cotransport in the rabbit proximal tubule. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7917–7920. doi: 10.1073/pnas.87.20.7917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamm L. L. Renal handling of citrate. Kidney Int. 1990 Oct;38(4):728–735. doi: 10.1038/ki.1990.265. [DOI] [PubMed] [Google Scholar]
- Hernandez R. E., Schambelan M., Cogan M. G., Colman J., Morris R. C., Jr, Sebastian A. Dietary NaCl determines severity of potassium depletion-induced metabolic alkalosis. Kidney Int. 1987 Jun;31(6):1356–1367. doi: 10.1038/ki.1987.150. [DOI] [PubMed] [Google Scholar]
- Hess B., Zipperle L., Jaeger P. Citrate and calcium effects on Tamm-Horsfall glycoprotein as a modifier of calcium oxalate crystal aggregation. Am J Physiol. 1993 Dec;265(6 Pt 2):F784–F791. doi: 10.1152/ajprenal.1993.265.6.F784. [DOI] [PubMed] [Google Scholar]
- Jenkins A. D., Dousa T. P., Smith L. H. Transport of citrate across renal brush border membrane: effects of dietary acid and alkali loading. Am J Physiol. 1985 Oct;249(4 Pt 2):F590–F595. doi: 10.1152/ajprenal.1985.249.4.F590. [DOI] [PubMed] [Google Scholar]
- Kippen I., Hirayama B., Klinenberg J. R., Wright E. M. Transport of tricarboxylic acid cycle intermediates by membrane vesicles from renal brush border. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3397–3400. doi: 10.1073/pnas.76.7.3397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levi M., McDonald L. A., Preisig P. A., Alpern R. J. Chronic K depletion stimulates rat renal brush-border membrane Na-citrate cotransporter. Am J Physiol. 1991 Nov;261(5 Pt 2):F767–F773. doi: 10.1152/ajprenal.1991.261.5.F767. [DOI] [PubMed] [Google Scholar]
- Lowenstein J. M. Effect of (-)-hydroxycitrate on fatty acid synthesis by rat liver in vivo. J Biol Chem. 1971 Feb 10;246(3):629–632. [PubMed] [Google Scholar]
- Moe O. W., Miller R. T., Horie S., Cano A., Preisig P. A., Alpern R. J. Differential regulation of Na/H antiporter by acid in renal epithelial cells and fibroblasts. J Clin Invest. 1991 Nov;88(5):1703–1708. doi: 10.1172/JCI115487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicar M. J., Hsu M. C., Johnson T., Pak C. Y. The preservation of urine samples for determination of renal stone risk factors. Lab Med. 1987 Jun;18(6):382–384. doi: 10.1093/labmed/18.6.382. [DOI] [PubMed] [Google Scholar]
- Nicar M. J., Skurla C., Sakhaee K., Pak C. Y. Low urinary citrate excretion in nephrolithiasis. Urology. 1983 Jan;21(1):8–14. doi: 10.1016/0090-4295(83)90113-9. [DOI] [PubMed] [Google Scholar]
- Numa S., Yamashita S. Regulation of lipogenesis in animal tissues. Curr Top Cell Regul. 1974;8(0):197–246. doi: 10.1016/b978-0-12-152808-9.50012-2. [DOI] [PubMed] [Google Scholar]
- OTTLEY C. M. A foreign body in the ileum. Lancet. 1953 Sep 26;265(6787):656–656. doi: 10.1016/s0140-6736(53)90374-2. [DOI] [PubMed] [Google Scholar]
- Pajor A. M. Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter. J Biol Chem. 1995 Mar 17;270(11):5779–5785. doi: 10.1074/jbc.270.11.5779. [DOI] [PubMed] [Google Scholar]
- Pak C. Y. Citrate and renal calculi. Miner Electrolyte Metab. 1987;13(4):257–266. [PubMed] [Google Scholar]
- Parlo R. A., Coleman P. S. Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. The truncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol. J Biol Chem. 1984 Aug 25;259(16):9997–10003. [PubMed] [Google Scholar]
- Preminger G. M., Sakhaee K., Skurla C., Pak C. Y. Prevention of recurrent calcium stone formation with potassium citrate therapy in patients with distal renal tubular acidosis. J Urol. 1985 Jul;134(1):20–23. doi: 10.1016/s0022-5347(17)46963-1. [DOI] [PubMed] [Google Scholar]
- Rudman D., Dedonis J. L., Fountain M. T., Chandler J. B., Gerron G. G., Fleming G. A., Kutner M. H. Hypocitraturia in patients with gastrointestinal malabsorption. N Engl J Med. 1980 Sep 18;303(12):657–661. doi: 10.1056/NEJM198009183031201. [DOI] [PubMed] [Google Scholar]
- SRERE P. A. The citrate cleavage enzyme. I. Distribution and purification. J Biol Chem. 1959 Oct;234:2544–2547. [PubMed] [Google Scholar]
- Sakhaee K., Nigam S., Snell P., Hsu M. C., Pak C. Y. Assessment of the pathogenetic role of physical exercise in renal stone formation. J Clin Endocrinol Metab. 1987 Nov;65(5):974–979. doi: 10.1210/jcem-65-5-974. [DOI] [PubMed] [Google Scholar]
- Simpson D. P. Citrate excretion: a window on renal metabolism. Am J Physiol. 1983 Mar;244(3):F223–F234. doi: 10.1152/ajprenal.1983.244.3.F223. [DOI] [PubMed] [Google Scholar]
- Simpson D. P., Hager S. R. pH and bicarbonate effects on mitochondrial anion accumulation. Proposed mechanism for changes in renal metabolite levels in acute acid-base disturbances. J Clin Invest. 1979 Apr;63(4):704–712. doi: 10.1172/JCI109353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh M., Richards E. G., Mukherjee A., Srere P. A. Structure of ATP citrate lyase from rat liver. Physicochemical studies and proteolytic modification. J Biol Chem. 1976 Sep 10;251(17):5242–5250. [PubMed] [Google Scholar]
- Srere P. A. The molecular physiology of citrate. Curr Top Cell Regul. 1992;33:261–275. doi: 10.1016/b978-0-12-152833-1.50020-4. [DOI] [PubMed] [Google Scholar]
- Sullivan A. C., Singh M., Srere P. A., Glusker J. P. Reactivity and inhibitor potential of hydroxycitrate isomers with citrate synthase, citrate lyase, and ATP citrate lyase. J Biol Chem. 1977 Nov 10;252(21):7583–7590. [PubMed] [Google Scholar]
- Szutowicz A., Kabata J., Bielarczyk H. The contribution of citrate to the synthesis of acetyl units in synaptosomes of developing rat brain. J Neurochem. 1982 May;38(5):1196–1204. doi: 10.1111/j.1471-4159.1982.tb07891.x. [DOI] [PubMed] [Google Scholar]
- Wright S. H., Kippen I., Wright E. M. Effect of pH on the transport of Krebs cycle intermediates in renal brush border membranes. Biochim Biophys Acta. 1982 Jan 22;684(2):287–290. doi: 10.1016/0005-2736(82)90019-0. [DOI] [PubMed] [Google Scholar]
