Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Nov 15;98(10):2398–2402. doi: 10.1172/JCI119053

Molecular analysis of the fructose transporter gene (GLUT5) in isolated fructose malabsorption.

D Wasserman 1, J H Hoekstra 1, V Tolia 1, C J Taylor 1, B S Kirschner 1, J Takeda 1, G I Bell 1, R Taub 1, E B Rand 1
PMCID: PMC507692  PMID: 8941659

Abstract

Fructose, a naturally occurring monosaccharide, is increasingly used as an added sweetener in processed foods in the form of high fructose corn syrup. Increased fructose intake combined with the identification of children with clinical evidence of isolated fructose malabsorption (IFM) has stimulated interest in possible disorders of fructose absorption. The intestinal absorption of fructose is carried out by the facilitative hexose transporter, which has been designated as GLUT5. Functional properties and tissue distribution of GLUT5 suggest that IFM might be due to mutations in the GLUT5 gene. To test this hypothesis, we screened the GLUT5 gene for mutations in a group of eight patients with IFM and in one subject with global malabsorption, as compared with 15 healthy parents of subjects and up to 6 unrelated controls. No mutations were found in the protein coding region of this gene in any of the subjects. A single G to A substitution in the 5' untranslated region of exon 1 was identified in the subject with global malabsorption. This subject and her healthy mother were heterozygous for the variant sequence, suggesting that it was unlikely to be clinically significant. In addition, sequence analysis of each of the 12 GLUT5 exons was performed in the index case and confirmed the negative single-strand conformation polymorphism findings. These studies demonstrate that IFM does not result from the expression of mutant GLUT5 protein.

Full Text

The Full Text of this article is available as a PDF (164.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes G., McKellar W., Lawrance S. Detection of fructose malabsorption by breath hydrogen test in a child with diarrhea. J Pediatr. 1983 Oct;103(4):575–577. doi: 10.1016/s0022-3476(83)80588-5. [DOI] [PubMed] [Google Scholar]
  2. Bell G. I., Burant C. F., Takeda J., Gould G. W. Structure and function of mammalian facilitative sugar transporters. J Biol Chem. 1993 Sep 15;268(26):19161–19164. [PubMed] [Google Scholar]
  3. Burant C. F., Saxena M. Rapid reversible substrate regulation of fructose transporter expression in rat small intestine and kidney. Am J Physiol. 1994 Jul;267(1 Pt 1):G71–G79. doi: 10.1152/ajpgi.1994.267.1.G71. [DOI] [PubMed] [Google Scholar]
  4. Burant C. F., Sivitz W. I., Fukumoto H., Kayano T., Nagamatsu S., Seino S., Pessin J. E., Bell G. I. Mammalian glucose transporters: structure and molecular regulation. Recent Prog Horm Res. 1991;47:349–388. doi: 10.1016/b978-0-12-571147-0.50015-9. [DOI] [PubMed] [Google Scholar]
  5. Burant C. F., Takeda J., Brot-Laroche E., Bell G. I., Davidson N. O. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem. 1992 Jul 25;267(21):14523–14526. [PubMed] [Google Scholar]
  6. Davidson N. O., Hausman A. M., Ifkovits C. A., Buse J. B., Gould G. W., Burant C. F., Bell G. I. Human intestinal glucose transporter expression and localization of GLUT5. Am J Physiol. 1992 Mar;262(3 Pt 1):C795–C800. doi: 10.1152/ajpcell.1992.262.3.C795. [DOI] [PubMed] [Google Scholar]
  7. Hanover L. M., White J. S. Manufacturing, composition, and applications of fructose. Am J Clin Nutr. 1993 Nov;58(5 Suppl):724S–732S. doi: 10.1093/ajcn/58.5.724S. [DOI] [PubMed] [Google Scholar]
  8. Hoekstra J. H. Fructose breath hydrogen tests in infants with chronic non-specific diarrhoea. Eur J Pediatr. 1995 May;154(5):362–364. doi: 10.1007/s004310050304. [DOI] [PubMed] [Google Scholar]
  9. Hoekstra J. H., van Kempen A. A., Bijl S. B., Kneepkens C. M. Fructose breath hydrogen tests. Arch Dis Child. 1993 Jan;68(1):136–138. doi: 10.1136/adc.68.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Inukai K., Asano T., Katagiri H., Ishihara H., Anai M., Fukushima Y., Tsukuda K., Kikuchi M., Yazaki Y., Oka Y. Cloning and increased expression with fructose feeding of rat jejunal GLUT5. Endocrinology. 1993 Nov;133(5):2009–2014. doi: 10.1210/endo.133.5.8404647. [DOI] [PubMed] [Google Scholar]
  11. Kayano T., Burant C. F., Fukumoto H., Gould G. W., Fan Y. S., Eddy R. L., Byers M. G., Shows T. B., Seino S., Bell G. I. Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). J Biol Chem. 1990 Aug 5;265(22):13276–13282. [PubMed] [Google Scholar]
  12. Kneepkens C. M., Jakobs C., Douwes A. C. Apple juice, fructose, and chronic nonspecific diarrhoea. Eur J Pediatr. 1989 Apr;148(6):571–573. doi: 10.1007/BF00441561. [DOI] [PubMed] [Google Scholar]
  13. Lifshitz F., Ament M. E., Kleinman R. E., Klish W., Lebenthal E., Perman J., Udall J. N., Jr Role of juice carbohydrate malabsorption in chronic nonspecific diarrhea in children. J Pediatr. 1992 May;120(5):825–829. doi: 10.1016/s0022-3476(05)80260-4. [DOI] [PubMed] [Google Scholar]
  14. Martín M. G., Turk E., Lostao M. P., Kerner C., Wright E. M. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nat Genet. 1996 Feb;12(2):216–220. doi: 10.1038/ng0296-216. [DOI] [PubMed] [Google Scholar]
  15. Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1994 Feb 1;219(3):713–725. doi: 10.1111/j.1432-1033.1994.tb18550.x. [DOI] [PubMed] [Google Scholar]
  16. Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2766–2770. doi: 10.1073/pnas.86.8.2766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Orita M., Suzuki Y., Sekiya T., Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics. 1989 Nov;5(4):874–879. doi: 10.1016/0888-7543(89)90129-8. [DOI] [PubMed] [Google Scholar]
  18. Park Y. K., Yetley E. A. Intakes and food sources of fructose in the United States. Am J Clin Nutr. 1993 Nov;58(5 Suppl):737S–747S. doi: 10.1093/ajcn/58.5.737S. [DOI] [PubMed] [Google Scholar]
  19. Pessin J. E., Bell G. I. Mammalian facilitative glucose transporter family: structure and molecular regulation. Annu Rev Physiol. 1992;54:911–930. doi: 10.1146/annurev.ph.54.030192.004403. [DOI] [PubMed] [Google Scholar]
  20. Riby J. E., Fujisawa T., Kretchmer N. Fructose absorption. Am J Clin Nutr. 1993 Nov;58(5 Suppl):748S–753S. doi: 10.1093/ajcn/58.5.748S. [DOI] [PubMed] [Google Scholar]
  21. Tajiri H., Hamamoto T., Harada T., Okada S. Fructose malabsorption in a child with chronic diarrhea. J Pediatr Gastroenterol Nutr. 1994 Jan;18(1):100–103. doi: 10.1097/00005176-199401000-00018. [DOI] [PubMed] [Google Scholar]
  22. Truswell A. S., Seach J. M., Thorburn A. W. Incomplete absorption of pure fructose in healthy subjects and the facilitating effect of glucose. Am J Clin Nutr. 1988 Dec;48(6):1424–1430. doi: 10.1093/ajcn/48.6.1424. [DOI] [PubMed] [Google Scholar]
  23. Vuilleumier S. Worldwide production of high-fructose syrup and crystalline fructose. Am J Clin Nutr. 1993 Nov;58(5 Suppl):733S–736S. doi: 10.1093/ajcn/58.5.733S. [DOI] [PubMed] [Google Scholar]
  24. Wales J. K., Primhak R. A., Rattenbury J., Taylor C. J. Isolated fructose malabsorption. Arch Dis Child. 1990 Feb;65(2):227–229. doi: 10.1136/adc.65.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES