Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Nov 15;98(10):2425–2430. doi: 10.1172/JCI119056

Selective activation of the mitogen-activated protein kinase subgroups c-Jun NH2 terminal kinase and p38 by IL-1 and TNF in human articular chondrocytes.

Y Geng 1, J Valbracht 1, M Lotz 1
PMCID: PMC507695  PMID: 8941662

Abstract

Previous studies suggested that tyrosine kinase activation is an important signal transduction event in the IL-1 response of chondrocytes. The present study identifies the mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase (ERK)-1 and ERK-2 as major tyrosine phosphorylated proteins in IL-1 stimulated chondrocytes. Kinase assays on immunoprecipitates with myelin basic protein as substrate showed that ERK-1 and ERK-2 activation was detectable within 5 min after IL-1 stimulation and decreased to baseline within 60 min. Analysis of other members of the MAP kinase family showed that chondrocytes also express c-Jun NH2 terminal kinase (JNK)-1, JNK-2, and p38 proteins. These kinases were time-dependently activated by IL-1. Among other chondrocyte activators tested, only TNF activated all three of the MAP kinase subgroups. JNK and p38 were not activated by any of the other cytokines and growth factors tested. However, ERK was also activated by PDGF, IGF-1, and IL-6. Phorbol 12-myristate 13-acetate, calcium ionophore, and cAMP analogues only increased ERK activity but had no significant effects on JNK or p38. These results suggest differential activation of MAP kinase subgroups by extracellular stimuli. ERK is activated in response to qualitatively diverse extracellular stimuli and various second messenger agonists. In contrast, JNK and p38 are only activated by IL-1 or TNF, suggesting that these kinases participate in the induction of the catabolic program in cartilage.

Full Text

The Full Text of this article is available as a PDF (281.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews H. J., Bunning R. A., Plumpton T. A., Clark I. M., Russell R. G., Cawston T. E. Inhibition of interleukin-1-induced collagenase production in human articular chondrocytes in vitro by recombinant human interferon-gamma. Arthritis Rheum. 1990 Nov;33(11):1733–1738. doi: 10.1002/art.1780331119. [DOI] [PubMed] [Google Scholar]
  2. Arner E. C., Pratta M. A. Modulation of interleukin-1-induced alterations in cartilage proteoglycan metabolism by activation of protein kinase C. Arthritis Rheum. 1991 Aug;34(8):1006–1013. doi: 10.1002/art.1780340810. [DOI] [PubMed] [Google Scholar]
  3. Aronheim A., Engelberg D., Li N., al-Alawi N., Schlessinger J., Karin M. Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell. 1994 Sep 23;78(6):949–961. doi: 10.1016/0092-8674(94)90271-2. [DOI] [PubMed] [Google Scholar]
  4. Beasley D. Interleukin 1 and endotoxin activate soluble guanylate cyclase in vascular smooth muscle. Am J Physiol. 1990 Jul;259(1 Pt 2):R38–R44. doi: 10.1152/ajpregu.1990.259.1.R38. [DOI] [PubMed] [Google Scholar]
  5. Beasley D., McGuiggin M. Interleukin 1 activates soluble guanylate cyclase in human vascular smooth muscle cells through a novel nitric oxide-independent pathway. J Exp Med. 1994 Jan 1;179(1):71–80. doi: 10.1084/jem.179.1.71. [DOI] [PubMed] [Google Scholar]
  6. Beasley D., Schwartz J. H., Brenner B. M. Interleukin 1 induces prolonged L-arginine-dependent cyclic guanosine monophosphate and nitrite production in rat vascular smooth muscle cells. J Clin Invest. 1991 Feb;87(2):602–608. doi: 10.1172/JCI115036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blanco F. J., Lotz M. IL-1-induced nitric oxide inhibits chondrocyte proliferation via PGE2. Exp Cell Res. 1995 May;218(1):319–325. doi: 10.1006/excr.1995.1161. [DOI] [PubMed] [Google Scholar]
  8. Buday L., Downward J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell. 1993 May 7;73(3):611–620. doi: 10.1016/0092-8674(93)90146-h. [DOI] [PubMed] [Google Scholar]
  9. Chandrasekhar S., Harvey A. K., Hrubey P. S., Bendele A. M. Arthritis induced by interleukin-1 is dependent on the site and frequency of intraarticular injection. Clin Immunol Immunopathol. 1990 Jun;55(3):382–400. doi: 10.1016/0090-1229(90)90126-b. [DOI] [PubMed] [Google Scholar]
  10. Chandrasekhar S., Harvey A. K., Stack S. T. Degradative and repair responses of cartilage to cytokines and growth factors occur via distinct pathways. Agents Actions Suppl. 1993;39:121–125. doi: 10.1007/978-3-0348-7442-7_13. [DOI] [PubMed] [Google Scholar]
  11. Cobb M. H., Goldsmith E. J. How MAP kinases are regulated. J Biol Chem. 1995 Jun 23;270(25):14843–14846. doi: 10.1074/jbc.270.25.14843. [DOI] [PubMed] [Google Scholar]
  12. Conquer J. A., Kandel R. A., Cruz T. F. Interleukin 1 and phorbol 12-myristate 13-acetate induce collagenase and PGE2 production through a PKC-independent mechanism in chondrocytes. Biochim Biophys Acta. 1992 Feb 19;1134(1):1–6. doi: 10.1016/0167-4889(92)90021-3. [DOI] [PubMed] [Google Scholar]
  13. Crofford L. J., Wilder R. L., Ristimäki A. P., Sano H., Remmers E. F., Epps H. R., Hla T. Cyclooxygenase-1 and -2 expression in rheumatoid synovial tissues. Effects of interleukin-1 beta, phorbol ester, and corticosteroids. J Clin Invest. 1994 Mar;93(3):1095–1101. doi: 10.1172/JCI117060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cruz T. F., Mills G., Pritzker K. P., Kandel R. A. Inverse correlation between tyrosine phosphorylation and collagenase production in chondrocytes. Biochem J. 1990 Aug 1;269(3):717–721. doi: 10.1042/bj2690717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Davis R. J. MAPKs: new JNK expands the group. Trends Biochem Sci. 1994 Nov;19(11):470–473. doi: 10.1016/0968-0004(94)90132-5. [DOI] [PubMed] [Google Scholar]
  16. Dérijard B., Hibi M., Wu I. H., Barrett T., Su B., Deng T., Karin M., Davis R. J. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994 Mar 25;76(6):1025–1037. doi: 10.1016/0092-8674(94)90380-8. [DOI] [PubMed] [Google Scholar]
  17. Dérijard B., Raingeaud J., Barrett T., Wu I. H., Han J., Ulevitch R. J., Davis R. J. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science. 1995 Feb 3;267(5198):682–685. doi: 10.1126/science.7839144. [DOI] [PubMed] [Google Scholar]
  18. Freshney N. W., Rawlinson L., Guesdon F., Jones E., Cowley S., Hsuan J., Saklatvala J. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell. 1994 Sep 23;78(6):1039–1049. doi: 10.1016/0092-8674(94)90278-x. [DOI] [PubMed] [Google Scholar]
  19. Geng Y., Blanco F. J., Cornelisson M., Lotz M. Regulation of cyclooxygenase-2 expression in normal human articular chondrocytes. J Immunol. 1995 Jul 15;155(2):796–801. [PubMed] [Google Scholar]
  20. Geng Y., Lotz M. Increased intracellular Ca2+ selectively suppresses IL-1-induced NO production by reducing iNOS mRNA stability. J Cell Biol. 1995 Jun;129(6):1651–1657. doi: 10.1083/jcb.129.6.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Geng Y., Maier R., Lotz M. Tyrosine kinases are involved with the expression of inducible nitric oxide synthase in human articular chondrocytes. J Cell Physiol. 1995 Jun;163(3):545–554. doi: 10.1002/jcp.1041630315. [DOI] [PubMed] [Google Scholar]
  22. Goldring M. B., Birkhead J. R., Suen L. F., Yamin R., Mizuno S., Glowacki J., Arbiser J. L., Apperley J. F. Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes. J Clin Invest. 1994 Dec;94(6):2307–2316. doi: 10.1172/JCI117595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Goldring M. B., Fukuo K., Birkhead J. R., Dudek E., Sandell L. J. Transcriptional suppression by interleukin-1 and interferon-gamma of type II collagen gene expression in human chondrocytes. J Cell Biochem. 1994 Jan;54(1):85–99. doi: 10.1002/jcb.240540110. [DOI] [PubMed] [Google Scholar]
  24. Grima D. T., Kandel R. A., Pepinsky B., Cruz T. F. Lipocortin 2 (annexin 2) is a major substrate for constitutive tyrosine kinase activity in chondrocytes. Biochemistry. 1994 Mar 15;33(10):2921–2926. doi: 10.1021/bi00176a023. [DOI] [PubMed] [Google Scholar]
  25. Gronich J., Konieczkowski M., Gelb M. H., Nemenoff R. A., Sedor J. R. Interleukin 1 alpha causes rapid activation of cytosolic phospholipase A2 by phosphorylation in rat mesangial cells. J Clin Invest. 1994 Mar;93(3):1224–1233. doi: 10.1172/JCI117076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Guerne P. A., Sublet A., Lotz M. Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts. J Cell Physiol. 1994 Mar;158(3):476–484. doi: 10.1002/jcp.1041580312. [DOI] [PubMed] [Google Scholar]
  27. Han J., Lee J. D., Bibbs L., Ulevitch R. J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 1994 Aug 5;265(5173):808–811. doi: 10.1126/science.7914033. [DOI] [PubMed] [Google Scholar]
  28. Harvey A. K., Stack S. T., Chandrasekhar S. Differential modulation of degradative and repair responses of interleukin-1-treated chondrocytes by platelet-derived growth factor. Biochem J. 1993 May 15;292(Pt 1):129–136. doi: 10.1042/bj2920129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hibi M., Lin A., Smeal T., Minden A., Karin M. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 1993 Nov;7(11):2135–2148. doi: 10.1101/gad.7.11.2135. [DOI] [PubMed] [Google Scholar]
  30. Hulkower K. I., Evans C. H. Protein phosphorylation and metalloproteinase synthesis by lapine articular chondrocytes. J Rheumatol Suppl. 1991 Feb;27:110–113. [PubMed] [Google Scholar]
  31. Hulkower K. I., Georgescu H. I., Evans C. H. Evidence that responses of articular chondrocytes to interleukin-1 and basic fibroblast growth factor are not mediated by protein kinase C. Biochem J. 1991 May 15;276(Pt 1):157–162. doi: 10.1042/bj2760157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hulkower K. I., Georgescu H. I., Evans C. H. Protein kinase C and chondrocyte activation. Agents Actions. 1989 Jun;27(3-4):442–444. doi: 10.1007/BF01972847. [DOI] [PubMed] [Google Scholar]
  33. Häuselmann H. J., Oppliger L., Michel B. A., Stefanovic-Racic M., Evans C. H. Nitric oxide and proteoglycan biosynthesis by human articular chondrocytes in alginate culture. FEBS Lett. 1994 Oct 3;352(3):361–364. doi: 10.1016/0014-5793(94)00994-5. [DOI] [PubMed] [Google Scholar]
  34. Kallunki T., Su B., Tsigelny I., Sluss H. K., Dérijard B., Moore G., Davis R., Karin M. JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev. 1994 Dec 15;8(24):2996–3007. doi: 10.1101/gad.8.24.2996. [DOI] [PubMed] [Google Scholar]
  35. Karin M. Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr Opin Cell Biol. 1994 Jun;6(3):415–424. doi: 10.1016/0955-0674(94)90035-3. [DOI] [PubMed] [Google Scholar]
  36. Kolesnick R., Golde D. W. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell. 1994 May 6;77(3):325–328. doi: 10.1016/0092-8674(94)90147-3. [DOI] [PubMed] [Google Scholar]
  37. Kyriakis J. M., Banerjee P., Nikolakaki E., Dai T., Rubie E. A., Ahmad M. F., Avruch J., Woodgett J. R. The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 1994 May 12;369(6476):156–160. doi: 10.1038/369156a0. [DOI] [PubMed] [Google Scholar]
  38. Lee J. C., Laydon J. T., McDonnell P. C., Gallagher T. F., Kumar S., Green D., McNulty D., Blumenthal M. J., Heys J. R., Landvatter S. W. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 1994 Dec 22;372(6508):739–746. doi: 10.1038/372739a0. [DOI] [PubMed] [Google Scholar]
  39. Leevers S. J., Paterson H. F., Marshall C. J. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature. 1994 Jun 2;369(6479):411–414. doi: 10.1038/369411a0. [DOI] [PubMed] [Google Scholar]
  40. Livingstone C., Patel G., Jones N. ATF-2 contains a phosphorylation-dependent transcriptional activation domain. EMBO J. 1995 Apr 18;14(8):1785–1797. doi: 10.1002/j.1460-2075.1995.tb07167.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lotz M., Blanco F. J., von Kempis J., Dudler J., Maier R., Villiger P. M., Geng Y. Cytokine regulation of chondrocyte functions. J Rheumatol Suppl. 1995 Feb;43:104–108. [PubMed] [Google Scholar]
  42. Lotz M., Guerne P. A. Interleukin-6 induces the synthesis of tissue inhibitor of metalloproteinases-1/erythroid potentiating activity (TIMP-1/EPA). J Biol Chem. 1991 Feb 5;266(4):2017–2020. [PubMed] [Google Scholar]
  43. Marshall C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995 Jan 27;80(2):179–185. doi: 10.1016/0092-8674(95)90401-8. [DOI] [PubMed] [Google Scholar]
  44. Mathias S., Younes A., Kan C. C., Orlow I., Joseph C., Kolesnick R. N. Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta. Science. 1993 Jan 22;259(5094):519–522. doi: 10.1126/science.8424175. [DOI] [PubMed] [Google Scholar]
  45. Minden A., Lin A., Claret F. X., Abo A., Karin M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell. 1995 Jun 30;81(7):1147–1157. doi: 10.1016/s0092-8674(05)80019-4. [DOI] [PubMed] [Google Scholar]
  46. Minden A., Lin A., McMahon M., Lange-Carter C., Dérijard B., Davis R. J., Johnson G. L., Karin M. Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science. 1994 Dec 9;266(5191):1719–1723. doi: 10.1126/science.7992057. [DOI] [PubMed] [Google Scholar]
  47. Mitchell P. G., Cheung H. S. Protein kinase regulation of tumor necrosis factor alpha stimulated collagenase and stromelysin message levels in chondrocytes. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1133–1142. doi: 10.1006/bbrc.1993.2369. [DOI] [PubMed] [Google Scholar]
  48. Muñoz E., Zubiaga A., Huang C., Huber B. T. Interleukin-1 induces protein tyrosine phosphorylation in T cells. Eur J Immunol. 1992 Jun;22(6):1391–1396. doi: 10.1002/eji.1830220610. [DOI] [PubMed] [Google Scholar]
  49. O'Byrne E. M., Blancuzzi V., Wilson D. E., Wong M., Jeng A. Y. Elevated substance P and accelerated cartilage degradation in rabbit knees injected with interleukin-1 and tumor necrosis factor. Arthritis Rheum. 1990 Jul;33(7):1023–1028. doi: 10.1002/art.1780330715. [DOI] [PubMed] [Google Scholar]
  50. Ogata Y., Pratta M. A., Nagase H., Arner E. C. Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) is induced in rabbit articular chondrocytes by cotreatment with interleukin 1 beta and a protein kinase C activator. Exp Cell Res. 1992 Aug;201(2):245–249. doi: 10.1016/0014-4827(92)90271-9. [DOI] [PubMed] [Google Scholar]
  51. Pettipher E. R., Higgs G. A., Henderson B. Interleukin 1 induces leukocyte infiltration and cartilage proteoglycan degradation in the synovial joint. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8749–8753. doi: 10.1073/pnas.83.22.8749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Schwarz H., Tuckwell J., Lotz M. A receptor induced by lymphocyte activation (ILA): a new member of the human nerve-growth-factor/tumor-necrosis-factor receptor family. Gene. 1993 Dec 8;134(2):295–298. doi: 10.1016/0378-1119(93)90110-o. [DOI] [PubMed] [Google Scholar]
  53. Stokoe D., Macdonald S. G., Cadwallader K., Symons M., Hancock J. F. Activation of Raf as a result of recruitment to the plasma membrane. Science. 1994 Jun 3;264(5164):1463–1467. doi: 10.1126/science.7811320. [DOI] [PubMed] [Google Scholar]
  54. Villiger P. M., Lotz M. Expression of prepro-enkephalin in human articular chondrocytes is linked to cell proliferation. EMBO J. 1992 Jan;11(1):135–143. doi: 10.1002/j.1460-2075.1992.tb05036.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Vincenti M. P., Coon C. I., Lee O., Brinckerhoff C. E. Regulation of collagenase gene expression by IL-1 beta requires transcriptional and post-transcriptional mechanisms. Nucleic Acids Res. 1994 Nov 11;22(22):4818–4827. doi: 10.1093/nar/22.22.4818. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES