Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Dec 1;98(11):2440–2445. doi: 10.1172/JCI119060

Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide (GIP). Effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat.

C C Tseng 1, T J Kieffer 1, L A Jarboe 1, T B Usdin 1, M M Wolfe 1
PMCID: PMC507699  PMID: 8958204

Abstract

Glucose-dependent insulinotropic polypeptide (GIP) is a 42-amino acid peptide produced by K cells of the mammalian proximal small intestine and is a potent stimulant of insulin release in the presence of hyperglycemia. However, its relative physiological importance as a postprandial insulinotropic agent is unknown. Using LGIPR2 cells stably transfected with rat GIP receptor cDNA, GIP (1-42) stimulation of cyclic adenosine monophosphate (cAMP) production was inhibited in a concentration-dependent manner by GIP (7-30)-NH2. Competition binding assays using stably transfected L293 cells demonstrated an IC50 for GIP receptor binding of 7 nmol/liter for GIP (1-42) and 200 nmol/liter for GIP (7-30)-NH2, whereas glucagonlike peptide-1 (GLP-1) binding to its receptor on ++betaTC3 cells was minimally displaced by GIP (7-30)-NH2. In fasted anesthetized rats, GIP (1-42) stimulated insulin release in a concentration-dependent manner, an effect abolished by the concomitant intraperitoneal administration of GIP (7-30)-NH2 (100 nmol/ kg). In contrast, glucose-, GLP-1-, and arginine-stimulated insulin release were not affected by GIP (7-30)-NH2. In separate experiments, GIP (7-30)-NH2 (100 nmol/kg) reduced postprandial insulin release in conscious rats by 72%. It is concluded that GIP (7-30)-NH2 is a GIP-specific receptor antagonist and that GIP plays a dominant role in mediating postprandial insulin release.

Full Text

The Full Text of this article is available as a PDF (159.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cleator I. G., Gourlay R. H. Release of immunoreactive gastric inhibitory polypeptide (IR-GIP) by oral ingestion of food substances. Am J Surg. 1975 Aug;130(2):128–135. doi: 10.1016/0002-9610(75)90360-8. [DOI] [PubMed] [Google Scholar]
  2. Creutzfeldt W., Ebert R. New developments in the incretin concept. Diabetologia. 1985 Aug;28(8):565–573. doi: 10.1007/BF00281990. [DOI] [PubMed] [Google Scholar]
  3. Dupre J., Ross S. A., Watson D., Brown J. C. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab. 1973 Nov;37(5):826–828. doi: 10.1210/jcem-37-5-826. [DOI] [PubMed] [Google Scholar]
  4. Ebert R., Creutzfeldt W. Gastrointestinal peptides and insulin secretion. Diabetes Metab Rev. 1987 Jan;3(1):1–26. doi: 10.1002/dmr.5610030101. [DOI] [PubMed] [Google Scholar]
  5. Efrat S., Linde S., Kofod H., Spector D., Delannoy M., Grant S., Hanahan D., Baekkeskov S. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9037–9041. doi: 10.1073/pnas.85.23.9037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gremlich S., Porret A., Hani E. H., Cherif D., Vionnet N., Froguel P., Thorens B. Cloning, functional expression, and chromosomal localization of the human pancreatic islet glucose-dependent insulinotropic polypeptide receptor. Diabetes. 1995 Oct;44(10):1202–1208. doi: 10.2337/diab.44.10.1202. [DOI] [PubMed] [Google Scholar]
  7. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  8. Kieffer T. J., Verchere C. B., Fell C. D., Huang Z., Brown J. C., Pedersen R. A. Glucose-dependent insulinotropic polypeptide stimulated insulin release from a tumor-derived beta-cell line (beta TC3). Can J Physiol Pharmacol. 1993 Dec;71(12):917–922. doi: 10.1139/y93-139. [DOI] [PubMed] [Google Scholar]
  9. Kolligs F., Fehmann H. C., Göke R., Göke B. Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9-39) amide. Diabetes. 1995 Jan;44(1):16–19. doi: 10.2337/diab.44.1.16. [DOI] [PubMed] [Google Scholar]
  10. Kreymann B., Williams G., Ghatei M. A., Bloom S. R. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet. 1987 Dec 5;2(8571):1300–1304. doi: 10.1016/s0140-6736(87)91194-9. [DOI] [PubMed] [Google Scholar]
  11. Kreymann B., Williams G., Ghatei M. A., Bloom S. R. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet. 1987 Dec 5;2(8571):1300–1304. doi: 10.1016/s0140-6736(87)91194-9. [DOI] [PubMed] [Google Scholar]
  12. Mojsov S., Weir G. C., Habener J. F. Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest. 1987 Feb;79(2):616–619. doi: 10.1172/JCI112855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nauck M. A., Bartels E., Orskov C., Ebert R., Creutzfeldt W. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol Metab. 1993 Apr;76(4):912–917. doi: 10.1210/jcem.76.4.8473405. [DOI] [PubMed] [Google Scholar]
  14. Nauck M. A., Homberger E., Siegel E. G., Allen R. C., Eaton R. P., Ebert R., Creutzfeldt W. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab. 1986 Aug;63(2):492–498. doi: 10.1210/jcem-63-2-492. [DOI] [PubMed] [Google Scholar]
  15. Nauck M., Schmidt W. E., Ebert R., Strietzel J., Cantor P., Hoffmann G., Creutzfeldt W. Insulinotropic properties of synthetic human gastric inhibitory polypeptide in man: interactions with glucose, phenylalanine, and cholecystokinin-8. J Clin Endocrinol Metab. 1989 Sep;69(3):654–662. doi: 10.1210/jcem-69-3-654. [DOI] [PubMed] [Google Scholar]
  16. Nauck M., Stöckmann F., Ebert R., Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia. 1986 Jan;29(1):46–52. doi: 10.1007/BF02427280. [DOI] [PubMed] [Google Scholar]
  17. Orskov C., Holst J. J. Radio-immunoassays for glucagon-like peptides 1 and 2 (GLP-1 and GLP-2). Scand J Clin Lab Invest. 1987 Apr;47(2):165–174. [PubMed] [Google Scholar]
  18. Orskov C., Jeppesen J., Madsbad S., Holst J. J. Proglucagon products in plasma of noninsulin-dependent diabetics and nondiabetic controls in the fasting state and after oral glucose and intravenous arginine. J Clin Invest. 1991 Feb;87(2):415–423. doi: 10.1172/JCI115012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rossowski W. J., Zacharia S., Mungan Z., Ozmen V., Ertan A., Baylor L. M., Jiang N. Y., Coy D. H. Reduced gastric acid inhibitory effect of a pGIP(1-30)NH2 fragment with potent pancreatic amylase inhibitory activity. Regul Pept. 1992 Apr 29;39(1):9–17. doi: 10.1016/0167-0115(92)90003-d. [DOI] [PubMed] [Google Scholar]
  20. Salera M., Giacomoni P., Pironi L., Ustra C., Capelli M., Giorgi A., Miglioli M., Barbara L. Circadian rhythm of gastric inhibitory polypeptide (GIP) in man. Metabolism. 1983 Jan;32(1):21–24. doi: 10.1016/0026-0495(83)90150-6. [DOI] [PubMed] [Google Scholar]
  21. Schmid R., Schusdziarra V., Aulehner R., Weigert N., Classen M. Comparison of GLP-1 (7-36amide) and GIP on release of somatostatin-like immunoreactivity and insulin from the isolated rat pancreas. Z Gastroenterol. 1990 Jun;28(6):280–284. [PubMed] [Google Scholar]
  22. Shima K., Hirota M., Ohboshi C. Effect of glucagon-like peptide-1 on insulin secretion. Regul Pept. 1988 Aug;22(3):245–252. doi: 10.1016/0167-0115(88)90037-7. [DOI] [PubMed] [Google Scholar]
  23. Shuster L. T., Go V. L., Rizza R. A., O'Brien P. C., Service F. J. Potential incretins. Mayo Clin Proc. 1988 Aug;63(8):794–800. doi: 10.1016/s0025-6196(12)62359-3. [DOI] [PubMed] [Google Scholar]
  24. Siegel E. G., Schulze A., Schmidt W. E., Creutzfeldt W. Comparison of the effect of GIP and GLP-1 (7-36amide) on insulin release from rat pancreatic islets. Eur J Clin Invest. 1992 Mar;22(3):154–157. doi: 10.1111/j.1365-2362.1992.tb01820.x. [DOI] [PubMed] [Google Scholar]
  25. Suzuki S., Kawai K., Ohashi S., Mukai H., Murayama Y., Yamashita K. Reduced insulinotropic effects of glucagonlike peptide I-(7-36)-amide and gastric inhibitory polypeptide in isolated perfused diabetic rat pancreas. Diabetes. 1990 Nov;39(11):1320–1325. doi: 10.2337/diab.39.11.1320. [DOI] [PubMed] [Google Scholar]
  26. Tseng C. C., Jarboe L. A., Landau S. B., Williams E. K., Wolfe M. M. Glucose-dependent insulinotropic peptide: structure of the precursor and tissue-specific expression in rat. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1992–1996. doi: 10.1073/pnas.90.5.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Unger R. H., Eisentraut A. M. Entero-insular axis. Arch Intern Med. 1969 Mar;123(3):261–266. [PubMed] [Google Scholar]
  28. Usdin T. B., Mezey E., Button D. C., Brownstein M. J., Bonner T. I. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology. 1993 Dec;133(6):2861–2870. doi: 10.1210/endo.133.6.8243312. [DOI] [PubMed] [Google Scholar]
  29. Wang Z., Wang R. M., Owji A. A., Smith D. M., Ghatei M. A., Bloom S. R. Glucagon-like peptide-1 is a physiological incretin in rat. J Clin Invest. 1995 Jan;95(1):417–421. doi: 10.1172/JCI117671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wheeler M. B., Gelling R. W., McIntosh C. H., Georgiou J., Brown J. C., Pederson R. A. Functional expression of the rat pancreatic islet glucose-dependent insulinotropic polypeptide receptor: ligand binding and intracellular signaling properties. Endocrinology. 1995 Oct;136(10):4629–4639. doi: 10.1210/endo.136.10.7664683. [DOI] [PubMed] [Google Scholar]
  31. Winsett O. E., Townsend C. M., Jr, Thompson J. C. Rapid and repeated blood sampling in the conscious laboratory rat: a new technique. Am J Physiol. 1985 Jul;249(1 Pt 1):G145–G146. doi: 10.1152/ajpgi.1985.249.1.G145. [DOI] [PubMed] [Google Scholar]
  32. Xu Z. X., Melethil S. Simultaneous sampling of blood, bile, and urine in rats for pharmacokinetic studies. J Pharmacol Methods. 1990 Nov;24(3):203–208. doi: 10.1016/0160-5402(90)90030-o. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES