Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Dec 1;98(11):2446–2449. doi: 10.1172/JCI119061

In situ microdialysis in bone tissue. Stimulation of prostaglandin E2 release by weight-bearing mechanical loading.

K Thorsen 1, A O Kristoffersson 1, U H Lerner 1, R P Lorentzon 1
PMCID: PMC507700  PMID: 8958205

Abstract

In this study we describe, to our knowledge, the first experiment using the microdialysis technique for studying the release of prostaglandin E2 (PGE2) in the proximal tibia metaphysis secondary to mechanical loading. Nine healthy females, six in the loading group and three controls, mean age 34+/-2 (years+/-SEM), participated. A standard microdialysis catheter was inserted into the tibia metaphyseal bone under local anesthesia. Samplings were done every 15 min under a 2-h equilibration period. Thereafter, heel-drops (one impact per second) with as hard impact of the heels into the floor as possible, were done for 5 min by the subjects in the loading group. The control group performed no exercise. Sampling continued after this for another 2-h period. Basal levels of PGE2 in the proximal tibial metaphysis were determined to a mean of 45+/-10 pg/ml (mean+/-SEM, n = 6). The major finding was a 2.5-3.5-fold increase in the release of PGE2 after mechanical loading. The increase was statistically significant (P < 0.05 compared with basal levels) 1 h after the mechanical loading and persisted for the rest of the experimental period. No major alterations were observed in the control group. In conclusion, our data demonstrate that in situ microdialysis is a useful method for studying the PGE2 production in human bone. Furthermore, a rapid and significant increase in PGE2 levels was noticed in response to dynamic mechanical loading.

Full Text

The Full Text of this article is available as a PDF (155.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Collins D. A., Chambers T. J. Effect of prostaglandins E1, E2, and F2 alpha on osteoclast formation in mouse bone marrow cultures. J Bone Miner Res. 1991 Feb;6(2):157–164. doi: 10.1002/jbmr.5650060209. [DOI] [PubMed] [Google Scholar]
  2. Darimont C., Vassaux G., Gaillard D., Ailhaud G., Négrel R. In situ microdialysis of prostaglandins in adipose tissue: stimulation of prostacyclin release by angiotensin II. Int J Obes Relat Metab Disord. 1994 Dec;18(12):783–788. [PubMed] [Google Scholar]
  3. Fuchi T., Rosdahl H., Hickner R. C., Ungerstedt U., Henricksson J. Microdialysis of rat skeletal muscle and adipose tissue: dynamics of the interstitial glucose pool. Acta Physiol Scand. 1994 Jun;151(2):249–260. doi: 10.1111/j.1748-1716.1994.tb09744.x. [DOI] [PubMed] [Google Scholar]
  4. Inoue H., Tanaka N., Uchiyama C. Parathyroid hormone increases the number of tartrate-resistant acid phosphatase-positive cells through prostaglandin E2 synthesis in adherent cell culture of neonatal rat bones. Endocrinology. 1995 Aug;136(8):3648–3656. doi: 10.1210/endo.136.8.7628405. [DOI] [PubMed] [Google Scholar]
  5. Kaji H., Sugimoto T., Kanatani M., Fukase M., Kumegawa M., Chihara K. Prostaglandin E2 stimulates osteoclast-like cell formation and bone-resorbing activity via osteoblasts: role of cAMP-dependent protein kinase. J Bone Miner Res. 1996 Jan;11(1):62–71. doi: 10.1002/jbmr.5650110110. [DOI] [PubMed] [Google Scholar]
  6. Kawaguchi H., Pilbeam C. C., Harrison J. R., Raisz L. G. The role of prostaglandins in the regulation of bone metabolism. Clin Orthop Relat Res. 1995 Apr;(313):36–46. [PubMed] [Google Scholar]
  7. Klein-Nulend J., van der Plas A., Semeins C. M., Ajubi N. E., Frangos J. A., Nijweide P. J., Burger E. H. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 1995 Mar;9(5):441–445. doi: 10.1096/fasebj.9.5.7896017. [DOI] [PubMed] [Google Scholar]
  8. Law M. R., Wald N. J., Meade T. W. Strategies for prevention of osteoporosis and hip fracture. BMJ. 1991 Aug 24;303(6800):453–459. doi: 10.1136/bmj.303.6800.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lönnroth P., Smith U. Microdialysis--a novel technique for clinical investigations. J Intern Med. 1990 May;227(5):295–300. doi: 10.1111/j.1365-2796.1990.tb00163.x. [DOI] [PubMed] [Google Scholar]
  10. Melton L. J., 3rd, Chrischilles E. A., Cooper C., Lane A. W., Riggs B. L. Perspective. How many women have osteoporosis? J Bone Miner Res. 1992 Sep;7(9):1005–1010. doi: 10.1002/jbmr.5650070902. [DOI] [PubMed] [Google Scholar]
  11. Pead M. J., Lanyon L. E. Indomethacin modulation of load-related stimulation of new bone formation in vivo. Calcif Tissue Int. 1989 Jul;45(1):34–40. doi: 10.1007/BF02556658. [DOI] [PubMed] [Google Scholar]
  12. Pead M. J., Skerry T. M., Lanyon L. E. Direct transformation from quiescence to bone formation in the adult periosteum following a single brief period of bone loading. J Bone Miner Res. 1988 Dec;3(6):647–656. doi: 10.1002/jbmr.5650030610. [DOI] [PubMed] [Google Scholar]
  13. Rawlinson S. C., Mohan S., Baylink D. J., Lanyon L. E. Exogenous prostacyclin, but not prostaglandin E2, produces similar responses in both G6PD activity and RNA production as mechanical loading, and increases IGF-II release, in adult cancellous bone in culture. Calcif Tissue Int. 1993 Nov;53(5):324–329. doi: 10.1007/BF01351837. [DOI] [PubMed] [Google Scholar]
  14. Rawlinson S. C., el-Haj A. J., Minter S. L., Tavares I. A., Bennett A., Lanyon L. E. Loading-related increases in prostaglandin production in cores of adult canine cancellous bone in vitro: a role for prostacyclin in adaptive bone remodeling? J Bone Miner Res. 1991 Dec;6(12):1345–1351. doi: 10.1002/jbmr.5650061212. [DOI] [PubMed] [Google Scholar]
  15. Rubin C. T., Lanyon L. E. Kappa Delta Award paper. Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J Orthop Res. 1987;5(2):300–310. doi: 10.1002/jor.1100050217. [DOI] [PubMed] [Google Scholar]
  16. Rubin C. T., Lanyon L. E. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int. 1985 Jul;37(4):411–417. doi: 10.1007/BF02553711. [DOI] [PubMed] [Google Scholar]
  17. Scutt A., Bertram P. Bone marrow cells are targets for the anabolic actions of prostaglandin E2 on bone: induction of a transition from nonadherent to adherent osteoblast precursors. J Bone Miner Res. 1995 Mar;10(3):474–487. doi: 10.1002/jbmr.5650100320. [DOI] [PubMed] [Google Scholar]
  18. Scutt A., Duvos C., Lauber J., Mayer H. Time-dependent effects of parathyroid hormone and prostaglandin E2 on DNA synthesis by periosteal cells from embryonic chick calvaria. Calcif Tissue Int. 1994 Sep;55(3):208–215. doi: 10.1007/BF00425877. [DOI] [PubMed] [Google Scholar]
  19. Siragy H. M., Ibrahim M. M., Jaffa A. A., Mayfield R., Margolius H. S. Rat renal interstitial bradykinin, prostaglandin E2, and cyclic guanosine 3',5'-monophosphate. Effects of altered sodium intake. Hypertension. 1994 Jun;23(6 Pt 2):1068–1070. doi: 10.1161/01.hyp.23.6.1068. [DOI] [PubMed] [Google Scholar]
  20. Smith T., Hewson A. K., Quarrie L., Leonard J. P., Cuzner M. L. Hypothalamic PGE2 and cAMP production and adrenocortical activation following intraperitoneal endotoxin injection: in vivo microdialysis studies in Lewis and Fischer rats. Neuroendocrinology. 1994 Apr;59(4):396–405. doi: 10.1159/000126683. [DOI] [PubMed] [Google Scholar]
  21. Young C. R. The F-SCAN system of foot pressure analysis. Clin Podiatr Med Surg. 1993 Jul;10(3):455–461. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES