Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Dec 1;98(11):2450–2455. doi: 10.1172/JCI119062

Magnetic resonance evidence of hypoxia in a homozygous alpha-knockout of a transgenic mouse model for sickle cell disease.

M E Fabry 1, R P Kennan 1, C Paszty 1, F Costantini 1, E M Rubin 1, J C Gore 1, R L Nagel 1
PMCID: PMC507701  PMID: 8958206

Abstract

All transgenic mouse models for sickle cell disease express residual levels of mouse globins which complicate the interpretation of experimental results. We now report on a mouse expressing high levels of human betaS and 100% human alpha-globin. These mice were created by breeding the alpha-knockout and the mouse beta(major)-deletion to homozygosity in mice expressing human alpha- and betaS-transgenes. These betaS-alpha-knockout mice have accelerated red cell destruction, altered hematological indices, ongoing organ damage, and pathology under ambient conditions which are comparable with those found in alphaH betaS-Ant[betaMDD] mice without introduction of additional mutations which convert betaS into a "super-betaS" such as the doubly mutated betaS-Antilles. This is of particular importance for testing strategies for gene therapy of sickle cell disease. Spin echo magnetic resonance imaging at room air and 100% oxygen demonstrated the presence of blood hypoxia (high levels of deoxygenated hemoglobin) in the liver and kidneys that was absent in control mice. We demonstrate here that transgenic mice can be useful to test new noninvasive diagnostic procedures, since the magnetic resonance imaging technique described here potentially can be applied to patients with sickle cell disease.

Full Text

The Full Text of this article is available as a PDF (412.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bank N., Aynedjian H. S., Qiu J. H., Osei S. Y., Ahima R. S., Fabry M. E., Nagel R. L. Renal nitric oxide synthases in transgenic sickle cell mice. Kidney Int. 1996 Jul;50(1):184–189. doi: 10.1038/ki.1996.301. [DOI] [PubMed] [Google Scholar]
  2. Brezis M., Rosen S. Hypoxia of the renal medulla--its implications for disease. N Engl J Med. 1995 Mar 9;332(10):647–655. doi: 10.1056/NEJM199503093321006. [DOI] [PubMed] [Google Scholar]
  3. Brezis M., Rosen S., Silva P., Epstein F. H. Renal ischemia: a new perspective. Kidney Int. 1984 Oct;26(4):375–383. doi: 10.1038/ki.1984.185. [DOI] [PubMed] [Google Scholar]
  4. Ciavatta D. J., Ryan T. M., Farmer S. C., Townes T. M. Mouse model of human beta zero thalassemia: targeted deletion of the mouse beta maj- and beta min-globin genes in embryonic stem cells. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9259–9263. doi: 10.1073/pnas.92.20.9259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Constable R. T., Kennan R. P., Puce A., McCarthy G., Gore J. C. Functional NMR imaging using fast spin echo at 1.5 T. Magn Reson Med. 1994 Jun;31(6):686–690. doi: 10.1002/mrm.1910310617. [DOI] [PubMed] [Google Scholar]
  6. De Franceschi L., Saadane N., Trudel M., Alper S. L., Brugnara C., Beuzard Y. Treatment with oral clotrimazole blocks Ca(2+)-activated K+ transport and reverses erythrocyte dehydration in transgenic SAD mice. A model for therapy of sickle cell disease. J Clin Invest. 1994 Apr;93(4):1670–1676. doi: 10.1172/JCI117149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fabry M. E., Costantini F., Pachnis A., Suzuka S. M., Bank N., Aynedjian H. S., Factor S. M., Nagel R. L. High expression of human beta S- and alpha-globins in transgenic mice: erythrocyte abnormalities, organ damage, and the effect of hypoxia. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12155–12159. doi: 10.1073/pnas.89.24.12155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fabry M. E., Nagel R. L., Pachnis A., Suzuka S. M., Costantini F. High expression of human beta S- and alpha-globins in transgenic mice: hemoglobin composition and hematological consequences. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12150–12154. doi: 10.1073/pnas.89.24.12150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fabry M. E., Sengupta A., Suzuka S. M., Costantini F., Rubin E. M., Hofrichter J., Christoph G., Manci E., Culberson D., Factor S. M. A second generation transgenic mouse model expressing both hemoglobin S (HbS) and HbS-Antilles results in increased phenotypic severity. Blood. 1995 Sep 15;86(6):2419–2428. [PubMed] [Google Scholar]
  10. Greaves D. R., Fraser P., Vidal M. A., Hedges M. J., Ropers D., Luzzatto L., Grosveld F. A transgenic mouse model of sickle cell disorder. Nature. 1990 Jan 11;343(6254):183–185. doi: 10.1038/343183a0. [DOI] [PubMed] [Google Scholar]
  11. Kaul D. K., Fabry M. E., Costantini F., Rubin E. M., Nagel R. L. In vivo demonstration of red cell-endothelial interaction, sickling and altered microvascular response to oxygen in the sickle transgenic mouse. J Clin Invest. 1995 Dec;96(6):2845–2853. doi: 10.1172/JCI118355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kennan R. P., Zhong J., Gore J. C. Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med. 1994 Jan;31(1):9–21. doi: 10.1002/mrm.1910310103. [DOI] [PubMed] [Google Scholar]
  13. Lutty G. A., McLeod D. S., Pachnis A., Costantini F., Fabry M. E., Nagel R. L. Retinal and choroidal neovascularization in a transgenic mouse model of sickle cell disease. Am J Pathol. 1994 Aug;145(2):490–497. [PMC free article] [PubMed] [Google Scholar]
  14. Monplaisir N., Merault G., Poyart C., Rhoda M. D., Craescu C., Vidaud M., Galacteros F., Blouquit Y., Rosa J. Hemoglobin S Antilles: a variant with lower solubility than hemoglobin S and producing sickle cell disease in heterozygotes. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9363–9367. doi: 10.1073/pnas.83.24.9363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ogawa S., Lee T. M., Nayak A. S., Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990 Apr;14(1):68–78. doi: 10.1002/mrm.1910140108. [DOI] [PubMed] [Google Scholar]
  16. Pászty C., Mohandas N., Stevens M. E., Loring J. F., Liebhaber S. A., Brion C. M., Rubin E. M. Lethal alpha-thalassaemia created by gene targeting in mice and its genetic rescue. Nat Genet. 1995 Sep;11(1):33–39. doi: 10.1038/ng0995-33. [DOI] [PubMed] [Google Scholar]
  17. Rhoda M. D., Domenget C., Vidaud M., Bardakdjian-Michau J., Rouyer-Fessard P., Rosa J., Beuzard Y. Mouse alpha chains inhibit polymerization of hemoglobin induced by human beta S or beta S Antilles chains. Biochim Biophys Acta. 1988 Jan 29;952(2):208–212. doi: 10.1016/0167-4838(88)90117-3. [DOI] [PubMed] [Google Scholar]
  18. Rubin E. M., Witkowska H. E., Spangler E., Curtin P., Lubin B. H., Mohandas N., Clift S. M. Hypoxia-induced in vivo sickling of transgenic mouse red cells. J Clin Invest. 1991 Feb;87(2):639–647. doi: 10.1172/JCI115041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ryan T. M., Townes T. M., Reilly M. P., Asakura T., Palmiter R. D., Brinster R. L., Behringer R. R. Human sickle hemoglobin in transgenic mice. Science. 1990 Feb 2;247(4942):566–568. doi: 10.1126/science.2154033. [DOI] [PubMed] [Google Scholar]
  20. Schroeder W. A., Shelton J. B., Shelton J. R., Huynh V., Teplow D. B. High performance liquid chromatographic separation of the globin chains of non-human hemoglobins. Hemoglobin. 1985;9(5):461–482. doi: 10.3109/03630268508997024. [DOI] [PubMed] [Google Scholar]
  21. Trudel M., De Paepe M. E., Chrétien N., Saadane N., Jacmain J., Sorette M., Hoang T., Beuzard Y. Sickle cell disease of transgenic SAD mice. Blood. 1994 Nov 1;84(9):3189–3197. [PubMed] [Google Scholar]
  22. Trudel M., Saadane N., Garel M. C., Bardakdjian-Michau J., Blouquit Y., Guerquin-Kern J. L., Rouyer-Fessard P., Vidaud D., Pachnis A., Roméo P. H. Towards a transgenic mouse model of sickle cell disease: hemoglobin SAD. EMBO J. 1991 Nov;10(11):3157–3165. doi: 10.1002/j.1460-2075.1991.tb04877.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yang B., Kirby S., Lewis J., Detloff P. J., Maeda N., Smithies O. A mouse model for beta 0-thalassemia. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11608–11612. doi: 10.1073/pnas.92.25.11608. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES