Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Dec 1;98(11):2462–2468. doi: 10.1172/JCI119064

Interaction between the insulin-like growth factor family and the integrin receptor family in tissue repair processes. Evidence in a rabbit ear dermal ulcer model.

R D Galiano 1, L L Zhao 1, D R Clemmons 1, S I Roth 1, X Lin 1, T A Mustoe 1
PMCID: PMC507703  PMID: 8958208

Abstract

We have determined previously that IGF-I is dependent on the presence of IGF binding protein-1 (IGFBP-1) to act as a wound healing agent. We sought to determine the mechanism whereby IGFBP-1 is able to enhance IGF-I bioactivity. As IGFBP-1 binds both the alpha5beta1 integrin as well as IGF-I in vitro, we asked which of the following interactions were important: (a) the ability of IGFBP-1 to interact with an integrin receptor, and/or (b) the binding of IGF-I by IGFBP-1. We used an IGF-1 analogue (des(1-3)IGF-I) with a > 100-fold reduction in affinity for IGFBP-1 as well as an IGFBP-1 mutant (WGD-IGFBP-1) which does not associate with the alpha5beta1 integrin to selectively abrogate each of these interactions. We also tested the ability of IGFBP-2, a related binding protein which has an arginine-glycine-aspartate sequence but does not associate with integrin family members, to enhance IGF-I bioactivity. Full-thickness dermal wounds were created on rabbit ears; various combinations of native IGF-I, native IGFBP-1, native IGFBP-2, and their respective analogues/mutants were applied to each wound. Wounds were harvested 7 d later for analysis. Only native IGF-I in combination with native IGFBP-1 was effective as a wound healing agent, enhancing reepithelialization and granulation tissue deposition by 64+/-5 and 83+/-12% over controls (P = 0.008 and 0.016, respectively). The same doses of IGF-I/WGD-IGFBP-1, des(1-3)IGF-I/IGFBP-1, and IGF-I/IGFBP-2 were ineffective. We propose that IGF-I physically interacts with IGFBP-1 and that IGFBP-1 also binds to an integrin receptor, most likely the alpha5beta1 integrin. This interaction is unique to IGFBP-1 as the closely related IGFBP-2 had no effect, a finding consistent with its inability to bind to integrin receptors. Our results suggest that activation of both the IGF-I receptor and the alpha5beta1 integrin is required for IGF-I to stimulate wound healing.

Full Text

The Full Text of this article is available as a PDF (481.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. C., Watt F. M. Regulation of development and differentiation by the extracellular matrix. Development. 1993 Apr;117(4):1183–1198. doi: 10.1242/dev.117.4.1183. [DOI] [PubMed] [Google Scholar]
  2. Bar R. S., Booth B. A., Boes M., Dake B. L. Insulin-like growth factor-binding proteins from vascular endothelial cells: purification, characterization, and intrinsic biological activities. Endocrinology. 1989 Oct;125(4):1910–1920. doi: 10.1210/endo-125-4-1910. [DOI] [PubMed] [Google Scholar]
  3. Blat C., Villaudy J., Binoux M. In vivo proteolysis of serum insulin-like growth factor (IGF) binding protein-3 results in increased availability of IGF to target cells. J Clin Invest. 1994 May;93(5):2286–2290. doi: 10.1172/JCI117229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blum W. F., Jenne E. W., Reppin F., Kietzmann K., Ranke M. B., Bierich J. R. Insulin-like growth factor I (IGF-I)-binding protein complex is a better mitogen than free IGF-I. Endocrinology. 1989 Aug;125(2):766–772. doi: 10.1210/endo-125-2-766. [DOI] [PubMed] [Google Scholar]
  5. Bourner M. J., Busby W. H., Jr, Siegel N. R., Krivi G. G., McCusker R. H., Clemmons D. R. Cloning and sequence determination of bovine insulin-like growth factor binding protein-2 (IGFBP-2): comparison of its structural and functional properties with IGFBP-1. J Cell Biochem. 1992 Feb;48(2):215–226. doi: 10.1002/jcb.240480212. [DOI] [PubMed] [Google Scholar]
  6. Busby W. H., Jr, Klapper D. G., Clemmons D. R. Purification of a 31,000-dalton insulin-like growth factor binding protein from human amniotic fluid. Isolation of two forms with different biologic actions. J Biol Chem. 1988 Oct 5;263(28):14203–14210. [PubMed] [Google Scholar]
  7. Carlsson-Skwirut C., Lake M., Hartmanis M., Hall K., Sara V. R. A comparison of the biological activity of the recombinant intact and truncated insulin-like growth factor 1 (IGF-1). Biochim Biophys Acta. 1989 May 10;1011(2-3):192–197. doi: 10.1016/0167-4889(89)90209-7. [DOI] [PubMed] [Google Scholar]
  8. Cavani A., Zambruno G., Marconi A., Manca V., Marchetti M., Giannetti A. Distinctive integrin expression in the newly forming epidermis during wound healing in humans. J Invest Dermatol. 1993 Oct;101(4):600–604. doi: 10.1111/1523-1747.ep12366057. [DOI] [PubMed] [Google Scholar]
  9. Chen Q., Kinch M. S., Lin T. H., Burridge K., Juliano R. L. Integrin-mediated cell adhesion activates mitogen-activated protein kinases. J Biol Chem. 1994 Oct 28;269(43):26602–26605. [PubMed] [Google Scholar]
  10. Clark E. A., Brugge J. S. Integrins and signal transduction pathways: the road taken. Science. 1995 Apr 14;268(5208):233–239. doi: 10.1126/science.7716514. [DOI] [PubMed] [Google Scholar]
  11. Clemmons D. R., Dehoff M. L., Busby W. H., Bayne M. L., Cascieri M. A. Competition for binding to insulin-like growth factor (IGF) binding protein-2, 3, 4, and 5 by the IGFs and IGF analogs. Endocrinology. 1992 Aug;131(2):890–895. doi: 10.1210/endo.131.2.1379166. [DOI] [PubMed] [Google Scholar]
  12. Clemmons D. R. IGF binding proteins: regulation of cellular actions. Growth Regul. 1992 Jun;2(2):80–87. [PubMed] [Google Scholar]
  13. Conover C. A., Ronk M., Lombana F., Powell D. R. Structural and biological characterization of bovine insulin-like growth factor binding protein-3. Endocrinology. 1990 Dec;127(6):2795–2803. doi: 10.1210/endo-127-6-2795. [DOI] [PubMed] [Google Scholar]
  14. Danilenko D. M., Ring B. D., Lu J. Z., Tarpley J. E., Chang D., Liu N., Wen D., Pierce G. F. Neu differentiation factor upregulates epidermal migration and integrin expression in excisional wounds. J Clin Invest. 1995 Feb;95(2):842–851. doi: 10.1172/JCI117734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. De Mellow J. S., Baxter R. C. Growth hormone-dependent insulin-like growth factor (IGF) binding protein both inhibits and potentiates IGF-I-stimulated DNA synthesis in human skin fibroblasts. Biochem Biophys Res Commun. 1988 Oct 14;156(1):199–204. doi: 10.1016/s0006-291x(88)80824-6. [DOI] [PubMed] [Google Scholar]
  16. Elgin R. G., Busby W. H., Jr, Clemmons D. R. An insulin-like growth factor (IGF) binding protein enhances the biologic response to IGF-I. Proc Natl Acad Sci U S A. 1987 May;84(10):3254–3258. doi: 10.1073/pnas.84.10.3254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gailit J., Clark R. A. Wound repair in the context of extracellular matrix. Curr Opin Cell Biol. 1994 Oct;6(5):717–725. doi: 10.1016/0955-0674(94)90099-x. [DOI] [PubMed] [Google Scholar]
  18. Gailit J., Welch M. P., Clark R. A. TGF-beta 1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds. J Invest Dermatol. 1994 Aug;103(2):221–227. doi: 10.1111/1523-1747.ep12393176. [DOI] [PubMed] [Google Scholar]
  19. Gartner M. H., Benson J. D., Caldwell M. D. Insulin-like growth factors I and II expression in the healing wound. J Surg Res. 1992 Apr;52(4):389–394. doi: 10.1016/0022-4804(92)90121-f. [DOI] [PubMed] [Google Scholar]
  20. Gockerman A., Prevette T., Jones J. I., Clemmons D. R. Insulin-like growth factor (IGF)-binding proteins inhibit the smooth muscle cell migration responses to IGF-I and IGF-II. Endocrinology. 1995 Oct;136(10):4168–4173. doi: 10.1210/endo.136.10.7545099. [DOI] [PubMed] [Google Scholar]
  21. Hamon G. A., Hunt T. K., Spencer E. M. In vivo effects of systemic insulin-like growth factor-I alone and complexed with insulin-like growth factor binding protein-3 on corticosteroid suppressed wounds. Growth Regul. 1993 Mar;3(1):53–56. [PubMed] [Google Scholar]
  22. Jones J. I., Clemmons D. R. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995 Feb;16(1):3–34. doi: 10.1210/edrv-16-1-3. [DOI] [PubMed] [Google Scholar]
  23. Jones J. I., D'Ercole A. J., Camacho-Hubner C., Clemmons D. R. Phosphorylation of insulin-like growth factor (IGF)-binding protein 1 in cell culture and in vivo: effects on affinity for IGF-I. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7481–7485. doi: 10.1073/pnas.88.17.7481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jones J. I., Gockerman A., Busby W. H., Jr, Wright G., Clemmons D. R. Insulin-like growth factor binding protein 1 stimulates cell migration and binds to the alpha 5 beta 1 integrin by means of its Arg-Gly-Asp sequence. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10553–10557. doi: 10.1073/pnas.90.22.10553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jones J. I., Prevette T., Gockerman A., Clemmons D. R. Ligand occupancy of the alpha-V-beta3 integrin is necessary for smooth muscle cells to migrate in response to insulin-like growth factor. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2482–2487. doi: 10.1073/pnas.93.6.2482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Juhasz I., Murphy G. F., Yan H. C., Herlyn M., Albelda S. M. Regulation of extracellular matrix proteins and integrin cell substratum adhesion receptors on epithelium during cutaneous human wound healing in vivo. Am J Pathol. 1993 Nov;143(5):1458–1469. [PMC free article] [PubMed] [Google Scholar]
  27. Jyung R. W., Mustoe J. A., Busby W. H., Clemmons D. R. Increased wound-breaking strength induced by insulin-like growth factor I in combination with insulin-like growth factor binding protein-1. Surgery. 1994 Feb;115(2):233–239. [PubMed] [Google Scholar]
  28. Kratz G., Lake M., Ljungström K., Forsberg G., Haegerstrand A., Gidlund M. Effect of recombinant IGF binding protein-1 on primary cultures of human keratinocytes and fibroblasts: selective enhancement of IGF-1 but not IGF-2-induced cell proliferation. Exp Cell Res. 1992 Oct;202(2):381–385. doi: 10.1016/0014-4827(92)90089-q. [DOI] [PubMed] [Google Scholar]
  29. Larjava H., Salo T., Haapasalmi K., Kramer R. H., Heino J. Expression of integrins and basement membrane components by wound keratinocytes. J Clin Invest. 1993 Sep;92(3):1425–1435. doi: 10.1172/JCI116719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. López-Casillas F., Payne H. M., Andres J. L., Massagué J. Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites. J Cell Biol. 1994 Feb;124(4):557–568. doi: 10.1083/jcb.124.4.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McCusker R. H., Busby W. H., Dehoff M. H., Camacho-Hubner C., Clemmons D. R. Insulin-like growth factor (IGF) binding to cell monolayers is directly modulated by the addition of IGF-binding proteins. Endocrinology. 1991 Aug;129(2):939–949. doi: 10.1210/endo-129-2-939. [DOI] [PubMed] [Google Scholar]
  32. McCusker R. H., Camacho-Hubner C., Bayne M. L., Cascieri M. A., Clemmons D. R. Insulin-like growth factor (IGF) binding to human fibroblast and glioblastoma cells: the modulating effect of cell released IGF binding proteins (IGFBPs). J Cell Physiol. 1990 Aug;144(2):244–253. doi: 10.1002/jcp.1041440210. [DOI] [PubMed] [Google Scholar]
  33. Morino N., Mimura T., Hamasaki K., Tobe K., Ueki K., Kikuchi K., Takehara K., Kadowaki T., Yazaki Y., Nojima Y. Matrix/integrin interaction activates the mitogen-activated protein kinase, p44erk-1 and p42erk-2. J Biol Chem. 1995 Jan 6;270(1):269–273. doi: 10.1074/jbc.270.1.269. [DOI] [PubMed] [Google Scholar]
  34. Mustoe T. A., Pierce G. F., Morishima C., Deuel T. F. Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J Clin Invest. 1991 Feb;87(2):694–703. doi: 10.1172/JCI115048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Oh Y., Müller H. L., Lee D. Y., Fielder P. J., Rosenfeld R. G. Characterization of the affinities of insulin-like growth factor (IGF)-binding proteins 1-4 for IGF-I, IGF-II, IGF-I/insulin hybrid, and IGF-I analogs. Endocrinology. 1993 Mar;132(3):1337–1344. doi: 10.1210/endo.132.3.7679979. [DOI] [PubMed] [Google Scholar]
  36. Pierce G. F., Tarpley J. E., Yanagihara D., Mustoe T. A., Fox G. M., Thomason A. Platelet-derived growth factor (BB homodimer), transforming growth factor-beta 1, and basic fibroblast growth factor in dermal wound healing. Neovessel and matrix formation and cessation of repair. Am J Pathol. 1992 Jun;140(6):1375–1388. [PMC free article] [PubMed] [Google Scholar]
  37. Plopper G. E., McNamee H. P., Dike L. E., Bojanowski K., Ingber D. E. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell. 1995 Oct;6(10):1349–1365. doi: 10.1091/mbc.6.10.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rapraeger A. C., Krufka A., Olwin B. B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science. 1991 Jun 21;252(5013):1705–1708. doi: 10.1126/science.1646484. [DOI] [PubMed] [Google Scholar]
  39. Rechler M. M., Brown A. L. Insulin-like growth factor binding proteins: gene structure and expression. Growth Regul. 1992 Jun;2(2):55–68. [PubMed] [Google Scholar]
  40. Ross M., Francis G. L., Szabo L., Wallace J. C., Ballard F. J. Insulin-like growth factor (IGF)-binding proteins inhibit the biological activities of IGF-1 and IGF-2 but not des-(1-3)-IGF-1. Biochem J. 1989 Feb 15;258(1):267–272. doi: 10.1042/bj2580267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ruoslahti E., Yamaguchi Y., Hildebrand A., Border W. A. Extracellular matrix/growth factor interactions. Cold Spring Harb Symp Quant Biol. 1992;57:309–315. doi: 10.1101/sqb.1992.057.01.035. [DOI] [PubMed] [Google Scholar]
  42. Ruoslahti E., Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell. 1991 Mar 8;64(5):867–869. doi: 10.1016/0092-8674(91)90308-l. [DOI] [PubMed] [Google Scholar]
  43. Schlaepfer D. D., Hanks S. K., Hunter T., van der Geer P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature. 1994 Dec 22;372(6508):786–791. doi: 10.1038/372786a0. [DOI] [PubMed] [Google Scholar]
  44. Schwartz M. A., Ingber D. E. Integrating with integrins. Mol Biol Cell. 1994 Apr;5(4):389–393. doi: 10.1091/mbc.5.4.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Skottner A., Kanje M., Jennische E., Sjögren J., Fryklund L. Tissue repair and IGF-I. Acta Paediatr Scand Suppl. 1988;347:110–112. [PubMed] [Google Scholar]
  46. Steenfos H. H., Jansson J. O. Gene expression of insulin-like growth factor-I and IGF-I receptor during wound healing in rats. Eur J Surg. 1992 Jun-Jul;158(6-7):327–331. [PubMed] [Google Scholar]
  47. Streuli C. H., Schmidhauser C., Kobrin M., Bissell M. J., Derynck R. Extracellular matrix regulates expression of the TGF-beta 1 gene. J Cell Biol. 1993 Jan;120(1):253–260. doi: 10.1083/jcb.120.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Suh D. Y., Hunt T. K., Spencer E. M. Insulin-like growth factor-I reverses the impairment of wound healing induced by corticosteroids in rats. Endocrinology. 1992 Nov;131(5):2399–2403. doi: 10.1210/endo.131.5.1425438. [DOI] [PubMed] [Google Scholar]
  49. Van Obberghen E. Signalling through the insulin receptor and the insulin-like growth factor-I receptor. Diabetologia. 1994 Sep;37 (Suppl 2):S125–S134. doi: 10.1007/BF00400836. [DOI] [PubMed] [Google Scholar]
  50. Vuori K., Ruoslahti E. Association of insulin receptor substrate-1 with integrins. Science. 1994 Dec 2;266(5190):1576–1578. doi: 10.1126/science.7527156. [DOI] [PubMed] [Google Scholar]
  51. Zambruno G., Marchisio P. C., Marconi A., Vaschieri C., Melchiori A., Giannetti A., De Luca M. Transforming growth factor-beta 1 modulates beta 1 and beta 5 integrin receptors and induces the de novo expression of the alpha v beta 6 heterodimer in normal human keratinocytes: implications for wound healing. J Cell Biol. 1995 May;129(3):853–865. doi: 10.1083/jcb.129.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zhang Z., Vuori K., Wang H., Reed J. C., Ruoslahti E. Integrin activation by R-ras. Cell. 1996 Apr 5;85(1):61–69. doi: 10.1016/s0092-8674(00)81082-x. [DOI] [PubMed] [Google Scholar]
  53. Zhao L. L., Davidson J. D., Wee S. C., Roth S. I., Mustoe T. A. Effect of hyperbaric oxygen and growth factors on rabbit ear ischemic ulcers. Arch Surg. 1994 Oct;129(10):1043–1049. doi: 10.1001/archsurg.1994.01420340057010. [DOI] [PubMed] [Google Scholar]
  54. Zhao L. L., Galiano R. D., Cox G. N., Roth S. I., Mustoe T. A. Effects of insulin-like growth factor-I and insulin-like growth factor binding protein-1 on wound healing in a dermal ulcer model. Wound Repair Regen. 1995 Jul–Sep;3(3):316–321. doi: 10.1046/j.1524-475X.1995.30312.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES