Abstract
Myocardial infarcts heal by scarring because myocardium cannot regenerate. To determine if skeletal myoblasts could establish new contractile tissue, hearts of adult inbred rats were injured by freeze-thaw, and 3-4.5 x 10(6) neonatal skeletal muscle cells were transplanted immediately thereafter. At 1 d the graft cells were proliferating and did not express myosin heavy chain (MHC). By 3 d, multinucleated myotubes were present which expressed both embryonic and fast fiber MHCs. At 2 wk, electron microscopy demonstrated possible satellite stem cells. By 7 wk the grafts began expressing beta-MHC, a hallmark of the slow fiber phenotype; coexpression of embryonic, fast, and beta-MHC continued through 3 mo. Transplanting myoblasts 1 wk after injury yielded comparable results, except that grafts expressed beta-MHC sooner (by 2 wk). Grafts never expressed cardiac-specific MHC-alpha. Wounds containing 2-wk-old myoblast grafts contracted when stimulated ex vivo, and high frequency stimulation induced tetanus. Furthermore, the grafts could perform a cardiac-like duty cycle, alternating tetanus and relaxation, for at least 6 min. Thus, skeletal myoblasts can establish new muscle tissue when grafted into injured hearts, and this muscle can contract when stimulated electrically. Because the grafts convert to fatigue-resistant, slow twitch fibers, this new muscle may be suited to a cardiac work load.
Full Text
The Full Text of this article is available as a PDF (861.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bader D., Masaki T., Fischman D. A. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J Cell Biol. 1982 Dec;95(3):763–770. doi: 10.1083/jcb.95.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balogh S., Naus C. C., Merrifield P. A. Expression of gap junctions in cultured rat L6 cells during myogenesis. Dev Biol. 1993 Feb;155(2):351–360. doi: 10.1006/dbio.1993.1034. [DOI] [PubMed] [Google Scholar]
- Chiu R. C., Zibaitis A., Kao R. L. Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg. 1995 Jul;60(1):12–18. [PubMed] [Google Scholar]
- Cifuentes-Diaz C., Nicolet M., Goudou D., Rieger F., Mège R. M. N-cadherin and N-CAM-mediated adhesion in development and regeneration of skeletal muscle. Neuromuscul Disord. 1993 Sep-Nov;3(5-6):361–365. doi: 10.1016/0960-8966(93)90078-x. [DOI] [PubMed] [Google Scholar]
- Clegg C. H., Hauschka S. D. Heterokaryon analysis of muscle differentiation: regulation of the postmitotic state. J Cell Biol. 1987 Aug;105(2):937–947. doi: 10.1083/jcb.105.2.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gu W., Schneider J. W., Condorelli G., Kaushal S., Mahdavi V., Nadal-Ginard B. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell. 1993 Feb 12;72(3):309–324. doi: 10.1016/0092-8674(93)90110-c. [DOI] [PubMed] [Google Scholar]
- Hauschka S. D. Clonal analysis of vertebrate myogenesis. II. Environmental influences upon human muscle differentiation. Dev Biol. 1974 Apr;37(2):329–344. doi: 10.1016/0012-1606(74)90153-5. [DOI] [PubMed] [Google Scholar]
- Havenith M. G., Visser R., Schrijvers-van Schendel J. M., Bosman F. T. Muscle fiber typing in routinely processed skeletal muscle with monoclonal antibodies. Histochemistry. 1990;93(5):497–499. doi: 10.1007/BF00266407. [DOI] [PubMed] [Google Scholar]
- Hughes S. M., Cho M., Karsch-Mizrachi I., Travis M., Silberstein L., Leinwand L. A., Blau H. M. Three slow myosin heavy chains sequentially expressed in developing mammalian skeletal muscle. Dev Biol. 1993 Jul;158(1):183–199. doi: 10.1006/dbio.1993.1178. [DOI] [PubMed] [Google Scholar]
- Jennings R. B., Reimer K. A. Lethal myocardial ischemic injury. Am J Pathol. 1981 Feb;102(2):241–255. [PMC free article] [PubMed] [Google Scholar]
- Kim K. K., Soonpaa M. H., Daud A. I., Koh G. Y., Kim J. S., Field L. J. Tumor suppressor gene expression during normal and pathologic myocardial growth. J Biol Chem. 1994 Sep 9;269(36):22607–22613. [PubMed] [Google Scholar]
- Koh G. Y., Kim S. J., Klug M. G., Park K., Soonpaa M. H., Field L. J. Targeted expression of transforming growth factor-beta 1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis. J Clin Invest. 1995 Jan;95(1):114–121. doi: 10.1172/JCI117627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koh G. Y., Klug M. G., Soonpaa M. H., Field L. J. Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest. 1993 Sep;92(3):1548–1554. doi: 10.1172/JCI116734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koh G. Y., Soonpaa M. H., Klug M. G., Pride H. P., Cooper B. J., Zipes D. P., Field L. J. Stable fetal cardiomyocyte grafts in the hearts of dystrophic mice and dogs. J Clin Invest. 1995 Oct;96(4):2034–2042. doi: 10.1172/JCI118251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kushmerick M. J., Moerland T. S., Wiseman R. W. Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and Pi. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7521–7525. doi: 10.1073/pnas.89.16.7521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mannion J. D., Bitto T., Hammond R. L., Rubinstein N. A., Stephenson L. W. Histochemical and fatigue characteristics of conditioned canine latissimus dorsi muscle. Circ Res. 1986 Feb;58(2):298–304. doi: 10.1161/01.res.58.2.298. [DOI] [PubMed] [Google Scholar]
- Mege R. M., Goudou D., Diaz C., Nicolet M., Garcia L., Geraud G., Rieger F. N-cadherin and N-CAM in myoblast fusion: compared localisation and effect of blockade by peptides and antibodies. J Cell Sci. 1992 Dec;103(Pt 4):897–906. doi: 10.1242/jcs.103.4.897. [DOI] [PubMed] [Google Scholar]
- Murry C. E., Kay M. A., Bartosek T., Hauschka S. D., Schwartz S. M. Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. J Clin Invest. 1996 Nov 15;98(10):2209–2217. doi: 10.1172/JCI119030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips S. K., Wiseman R. W., Woledge R. C., Kushmerick M. J. The effect of metabolic fuel on force production and resting inorganic phosphate levels in mouse skeletal muscle. J Physiol. 1993 Mar;462:135–146. doi: 10.1113/jphysiol.1993.sp019547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quaini F., Cigola E., Lagrasta C., Saccani G., Quaini E., Rossi C., Olivetti G., Anversa P. End-stage cardiac failure in humans is coupled with the induction of proliferating cell nuclear antigen and nuclear mitotic division in ventricular myocytes. Circ Res. 1994 Dec;75(6):1050–1063. doi: 10.1161/01.res.75.6.1050. [DOI] [PubMed] [Google Scholar]
- Reimer K. A., Jennings R. B. The "wavefront phenomenon" of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest. 1979 Jun;40(6):633–644. [PubMed] [Google Scholar]
- Reiss K., Kajstura J., Capasso J. M., Marino T. A., Anversa P. Impairment of myocyte contractility following coronary artery narrowing is associated with activation of the myocyte IGF1 autocrine system, enhanced expression of late growth related genes, DNA synthesis, and myocyte nuclear mitotic division in rats. Exp Cell Res. 1993 Aug;207(2):348–360. doi: 10.1006/excr.1993.1202. [DOI] [PubMed] [Google Scholar]
- Rudnicki M. A., Jackowski G., Saggin L., McBurney M. W. Actin and myosin expression during development of cardiac muscle from cultured embryonal carcinoma cells. Dev Biol. 1990 Apr;138(2):348–358. doi: 10.1016/0012-1606(90)90202-t. [DOI] [PubMed] [Google Scholar]
- Silberstein L., Webster S. G., Travis M., Blau H. M. Developmental progression of myosin gene expression in cultured muscle cells. Cell. 1986 Sep 26;46(7):1075–1081. doi: 10.1016/0092-8674(86)90707-5. [DOI] [PubMed] [Google Scholar]
- Soonpaa M. H., Koh G. Y., Klug M. G., Field L. J. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science. 1994 Apr 1;264(5155):98–101. doi: 10.1126/science.8140423. [DOI] [PubMed] [Google Scholar]
- Tam S. K., Gu W., Mahdavi V., Nadal-Ginard B. Cardiac myocyte terminal differentiation. Potential for cardiac regeneration. Ann N Y Acad Sci. 1995 Mar 27;752:72–79. doi: 10.1111/j.1749-6632.1995.tb17407.x. [DOI] [PubMed] [Google Scholar]
- Vracko R., Thorning D. Contractile cells in rat myocardial scar tissue. Lab Invest. 1991 Aug;65(2):214–227. [PubMed] [Google Scholar]
- Vracko R., Thorning D., Frederickson R. G., Cunningham D. Myocyte reactions at the borders of injured and healing rat myocardium. Lab Invest. 1988 Jul;59(1):104–114. [PubMed] [Google Scholar]
- Vracko R., Thorning D., Frederickson R. G. Fate of nerve fibers in necrotic, healing, and healed rat myocardium. Lab Invest. 1990 Oct;63(4):490–501. [PubMed] [Google Scholar]
- Weintraub H., Davis R., Tapscott S., Thayer M., Krause M., Benezra R., Blackwell T. K., Turner D., Rupp R., Hollenberg S. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991 Feb 15;251(4995):761–766. doi: 10.1126/science.1846704. [DOI] [PubMed] [Google Scholar]
- Wiseman R. W., Beck T. W., Chase P. B. Effect of intracellular pH on force development depends on temperature in intact skeletal muscle from mouse. Am J Physiol. 1996 Sep;271(3 Pt 1):C878–C886. doi: 10.1152/ajpcell.1996.271.3.C878. [DOI] [PubMed] [Google Scholar]
- Yoshizumi M., Lee W. S., Hsieh C. M., Tsai J. C., Li J., Perrella M. A., Patterson C., Endege W. O., Schlegel R., Lee M. E. Disappearance of cyclin A correlates with permanent withdrawal of cardiomyocytes from the cell cycle in human and rat hearts. J Clin Invest. 1995 May;95(5):2275–2280. doi: 10.1172/JCI117918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zibaitis A., Greentree D., Ma F., Marelli D., Duong M., Chiu R. C. Myocardial regeneration with satellite cell implantation. Transplant Proc. 1994 Dec;26(6):3294–3294. [PubMed] [Google Scholar]
- van Kleef E. M., Smits J. F., De Mey J. G., Cleutjens J. P., Lombardi D. M., Schwartz S. M., Daemen M. J. Alpha 1-adrenoreceptor blockade reduces the angiotensin II-induced vascular smooth muscle cell DNA synthesis in the rat thoracic aorta and carotid artery. Circ Res. 1992 Jun;70(6):1122–1127. doi: 10.1161/01.res.70.6.1122. [DOI] [PubMed] [Google Scholar]