Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Dec 1;98(11):2597–2603. doi: 10.1172/JCI119079

Naturally processed T cell epitopes from human glutamic acid decarboxylase identified using mice transgenic for the type 1 diabetes-associated human MHC class II allele, DRB1*0401.

L S Wicker 1, S L Chen 1, G T Nepom 1, J F Elliott 1, D C Freed 1, A Bansal 1, S Zheng 1, A Herman 1, A Lernmark 1, D M Zaller 1, L B Peterson 1, J B Rothbard 1, R Cummings 1, P J Whiteley 1
PMCID: PMC507718  PMID: 8958223

Abstract

The identification of class II binding peptide epitopes from autoimmune disease-related antigens is an essential step in the development of antigen-specific immune modulation therapy. In the case of type 1 diabetes, T cell and B cell reactivity to the autoantigen glutamic acid decarboxylase 65 (GAD65) is associated with disease development in humans and in nonobese diabetic (NOD) mice. In this study, we identify two DRB1*0401-restricted T cell epitopes from human GAD65, 274-286, and 115-127. Both peptides are immunogenic in transgenic mice expressing functional DRB1*0401 MHC class II molecules but not in nontransgenic littermates. Processing of GAD65 by antigen presenting cells (APC) resulted in the formation of DRB1*0401 complexes loaded with either the 274-286 or 115-127 epitopes, suggesting that these naturally derived epitopes may be displayed on APC recruited into pancreatic islets. The presentation of these two T cell epitopes in the islets of DRB1*0401 individuals who are at risk for type 1 diabetes may allow for antigen-specific recruitment of regulatory cells to the islets following peptide immunization.

Full Text

The Full Text of this article is available as a PDF (404.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson M. A., Bowman M. A., Campbell L., Darrow B. L., Kaufman D. L., Maclaren N. K. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin Invest. 1994 Nov;94(5):2125–2129. doi: 10.1172/JCI117567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atkinson M. A., Maclaren N. K. The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med. 1994 Nov 24;331(21):1428–1436. doi: 10.1056/NEJM199411243312107. [DOI] [PubMed] [Google Scholar]
  3. Chang Y. C., Gottlieb D. I. Characterization of the proteins purified with monoclonal antibodies to glutamic acid decarboxylase. J Neurosci. 1988 Jun;8(6):2123–2130. doi: 10.1523/JNEUROSCI.08-06-02123.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Denzin L. K., Robbins N. F., Carboy-Newcomb C., Cresswell P. Assembly and intracellular transport of HLA-DM and correction of the class II antigen-processing defect in T2 cells. Immunity. 1994 Oct;1(7):595–606. doi: 10.1016/1074-7613(94)90049-3. [DOI] [PubMed] [Google Scholar]
  5. Elliott J. F., Qin H. Y., Bhatti S., Smith D. K., Singh R. K., Dillon T., Lauzon J., Singh B. Immunization with the larger isoform of mouse glutamic acid decarboxylase (GAD67) prevents autoimmune diabetes in NOD mice. Diabetes. 1994 Dec;43(12):1494–1499. doi: 10.2337/diab.43.12.1494. [DOI] [PubMed] [Google Scholar]
  6. Grewal I. S., Moudgil K. D., Sercarz E. E. Hindrance of binding to class II major histocompatibility complex molecules by a single amino acid residue contiguous to a determinant leads to crypticity of the determinant as well as lack of response to the protein antigen. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1779–1783. doi: 10.1073/pnas.92.5.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harrison L. C., Honeyman M. C., DeAizpurua H. J., Schmidli R. S., Colman P. G., Tait B. D., Cram D. S. Inverse relation between humoral and cellular immunity to glutamic acid decarboxylase in subjects at risk of insulin-dependent diabetes. Lancet. 1993 May 29;341(8857):1365–1369. doi: 10.1016/0140-6736(93)90940-i. [DOI] [PubMed] [Google Scholar]
  8. Hill C. M., Liu A., Marshall K. W., Mayer J., Jorgensen B., Yuan B., Cubbon R. M., Nichols E. A., Wicker L. S., Rothbard J. B. Exploration of requirements for peptide binding to HLA DRB1*0101 and DRB1*0401. J Immunol. 1994 Mar 15;152(6):2890–2898. [PubMed] [Google Scholar]
  9. Karlsen A. E., Hagopian W. A., Grubin C. E., Dube S., Disteche C. M., Adler D. A., Bärmeier H., Mathewes S., Grant F. J., Foster D. Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8337–8341. doi: 10.1073/pnas.88.19.8337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaufman D. L., Clare-Salzler M., Tian J., Forsthuber T., Ting G. S., Robinson P., Atkinson M. A., Sercarz E. E., Tobin A. J., Lehmann P. V. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature. 1993 Nov 4;366(6450):69–72. doi: 10.1038/366069a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kovats S., Nepom G. T., Coleman M., Nepom B., Kwok W. W., Blum J. S. Deficient antigen-presenting cell function in multiple genetic complementation groups of type II bare lymphocyte syndrome. J Clin Invest. 1995 Jul;96(1):217–223. doi: 10.1172/JCI118023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee D. S., Tian J., Phan T., Kaufman D. L. Cloning and sequence analysis of a murine cDNA encoding glutamate decarboxylase (GAD65). Biochim Biophys Acta. 1993 Oct 19;1216(1):157–160. doi: 10.1016/0167-4781(93)90056-j. [DOI] [PubMed] [Google Scholar]
  13. Marshall K. W., Wilson K. J., Liang J., Woods A., Zaller D., Rothbard J. B. Prediction of peptide affinity to HLA DRB1*0401. J Immunol. 1995 Jun 1;154(11):5927–5933. [PubMed] [Google Scholar]
  14. Novak T. J., Farber D., Leitenberg D., Hong S. C., Johnson P., Bottomly K. Isoforms of the transmembrane tyrosine phosphatase CD45 differentially affect T cell recognition. Immunity. 1994 May;1(2):109–119. doi: 10.1016/1074-7613(94)90104-x. [DOI] [PubMed] [Google Scholar]
  15. Takebe Y., Seiki M., Fujisawa J., Hoy P., Yokota K., Arai K., Yoshida M., Arai N. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 1988 Jan;8(1):466–472. doi: 10.1128/mcb.8.1.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tampé R., McConnell H. M. Kinetics of antigenic peptide binding to the class II major histocompatibility molecule I-Ad. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4661–4665. doi: 10.1073/pnas.88.11.4661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tisch R., Yang X. D., Singer S. M., Liblau R. S., Fugger L., McDevitt H. O. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature. 1993 Nov 4;366(6450):72–75. doi: 10.1038/366072a0. [DOI] [PubMed] [Google Scholar]
  18. Woods A., Chen H. Y., Trumbauer M. E., Sirotina A., Cummings R., Zaller D. M. Human major histocompatibility complex class II-restricted T cell responses in transgenic mice. J Exp Med. 1994 Jul 1;180(1):173–181. doi: 10.1084/jem.180.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wucherpfennig K. W., Strominger J. L. Selective binding of self peptides to disease-associated major histocompatibility complex (MHC) molecules: a mechanism for MHC-linked susceptibility to human autoimmune diseases. J Exp Med. 1995 May 1;181(5):1597–1601. doi: 10.1084/jem.181.5.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. de la Luna S., Soria I., Pulido D., Ortín J., Jiménez A. Efficient transformation of mammalian cells with constructs containing a puromycin-resistance marker. Gene. 1988;62(1):121–126. doi: 10.1016/0378-1119(88)90585-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES