Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Dec 1;98(11):2632–2639. doi: 10.1172/JCI119084

Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci.

S L Leib 1, Y S Kim 1, L L Chow 1, R A Sheldon 1, M G Täuber 1
PMCID: PMC507723  PMID: 8958228

Abstract

Reactive oxygen intermediates (ROI) contribute to neuronal injury in cerebral ischemia and trauma. In this study we explored the role of ROI in bacterial meningitis. Meningitis caused by group B streptococci in infant rats led to two distinct forms of neuronal injury, areas of necrosis in the cortex and neuronal loss in the dentate gyrus of the hippocampus, the latter showing evidence for apoptosis. Staining of brain sections with diaminobenzidine after perfusion with manganese buffer and measurement of lipid peroxidation products in brain homogenates both provided evidence that meningitis led to the generation of ROI. Treatment with the radical scavenger alpha-phenyl-tert-butyl nitrone (PBN) (100 mg/kg q8h i.p.) beginning at the time of infection completely abolished ROI detection and the increase in lipidperoxidation. Cerebral cortical perfusion was reduced in animals with meningitis to 37.5+/-21.0% of uninfected controls (P < 0.05), and PBN restored cortical perfusion to 72.0+/-8.1% of controls (P < 0.05 vs meningitis). PBN also completely prevented neuronal injury in the cortex and hippocampus, when started at the time of infection (P < 0.02), and significantly reduced both forms of injury, when started 18 h after infection together with antibiotics (P < 0.004 for cortex and P < 0.001 for hippocampus). These data indicate that the generation of ROI is a major contributor to cerebral ischemia and necrotic and apoptotic neuronal injury in this model of neonatal meningitis.

Full Text

The Full Text of this article is available as a PDF (317.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashwal S., Stringer W., Tomasi L., Schneider S., Thompson J., Perkin R. Cerebral blood flow and carbon dioxide reactivity in children with bacterial meningitis. J Pediatr. 1990 Oct;117(4):523–530. doi: 10.1016/s0022-3476(05)80683-3. [DOI] [PubMed] [Google Scholar]
  2. Beilharz E. J., Williams C. E., Dragunow M., Sirimanne E. S., Gluckman P. D. Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: evidence for apoptosis during selective neuronal loss. Brain Res Mol Brain Res. 1995 Mar;29(1):1–14. doi: 10.1016/0169-328x(94)00217-3. [DOI] [PubMed] [Google Scholar]
  3. Bonfoco E., Krainc D., Ankarcrona M., Nicotera P., Lipton S. A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7162–7166. doi: 10.1073/pnas.92.16.7162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cao X., Phillis J. W. alpha-Phenyl-tert-butyl-nitrone reduces cortical infarct and edema in rats subjected to focal ischemia. Brain Res. 1994 May 2;644(2):267–272. doi: 10.1016/0006-8993(94)91689-6. [DOI] [PubMed] [Google Scholar]
  5. Carney J. M., Floyd R. A. Protection against oxidative damage to CNS by alpha-phenyl-tert-butyl nitrone (PBN) and other spin-trapping agents: a novel series of nonlipid free radical scavengers. J Mol Neurosci. 1991;3(1):47–57. doi: 10.1007/BF02896848. [DOI] [PubMed] [Google Scholar]
  6. Chao C. C., Hu S., Peterson P. K. Modulation of human microglial cell superoxide production by cytokines. J Leukoc Biol. 1995 Jul;58(1):65–70. doi: 10.1002/jlb.58.1.65. [DOI] [PubMed] [Google Scholar]
  7. Cheng H. Y., Liu T., Feuerstein G., Barone F. C. Distribution of spin-trapping compounds in rat blood and brain: in vivo microdialysis determination. Free Radic Biol Med. 1993 Mar;14(3):243–250. doi: 10.1016/0891-5849(93)90021-l. [DOI] [PubMed] [Google Scholar]
  8. Defraigne J. O., Detry O., Pincemail J., Franssen C., Meurisse M., Lamy M., Limet R. Direct evidence of free radical production after ischaemia and reperfusion and protective effect of desferrioxamine: ESR and vitamin E studies. Eur J Vasc Surg. 1994 Sep;8(5):537–543. doi: 10.1016/s0950-821x(05)80587-0. [DOI] [PubMed] [Google Scholar]
  9. Dugan L. L., Sensi S. L., Canzoniero L. M., Handran S. D., Rothman S. M., Lin T. S., Goldberg M. P., Choi D. W. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci. 1995 Oct;15(10):6377–6388. doi: 10.1523/JNEUROSCI.15-10-06377.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Durand M. L., Calderwood S. B., Weber D. J., Miller S. I., Southwick F. S., Caviness V. S., Jr, Swartz M. N. Acute bacterial meningitis in adults. A review of 493 episodes. N Engl J Med. 1993 Jan 7;328(1):21–28. doi: 10.1056/NEJM199301073280104. [DOI] [PubMed] [Google Scholar]
  11. Edwards M. S., Rench M. A., Haffar A. A., Murphy M. A., Desmond M. M., Baker C. J. Long-term sequelae of group B streptococcal meningitis in infants. J Pediatr. 1985 May;106(5):717–722. doi: 10.1016/s0022-3476(85)80342-5. [DOI] [PubMed] [Google Scholar]
  12. Ernst J. D., Decazes J. M., Sande M. A. Experimental pneumococcal meningitis: role of leukocytes in pathogenesis. Infect Immun. 1983 Jul;41(1):275–279. doi: 10.1128/iai.41.1.275-279.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Esterbauer H., Cheeseman K. H. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990;186:407–421. doi: 10.1016/0076-6879(90)86134-h. [DOI] [PubMed] [Google Scholar]
  14. Ferriero D. M., Arcavi L. J., Sagar S. M., McIntosh T. K., Simon R. P. Selective sparing of NADPH-diaphorase neurons in neonatal hypoxia-ischemia. Ann Neurol. 1988 Nov;24(5):670–676. doi: 10.1002/ana.410240512. [DOI] [PubMed] [Google Scholar]
  15. Folbergrová J., Zhao Q., Katsura K., Siesjö B. K. N-tert-butyl-alpha-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5057–5061. doi: 10.1073/pnas.92.11.5057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. French J. F., Thomas C. E., Downs T. R., Ohlweiler D. F., Carr A. A., Dage R. C. Protective effects of a cyclic nitrone antioxidant in animal models of endotoxic shock and chronic bacteremia. Circ Shock. 1994 Jul;43(3):130–136. [PubMed] [Google Scholar]
  17. Förderreuther S., Tatsch K., Einhäupl K. M., Pfister H. W. Abnormalities of cerebral blood flow in the acute phase of bacterial meningitis in adults. J Neurol. 1992 Oct;239(8):431–436. doi: 10.1007/BF00856807. [DOI] [PubMed] [Google Scholar]
  18. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Goitein K. J., Tamir I. Cerebral perfusion pressure in central nervous system infections of infancy and childhood. J Pediatr. 1983 Jul;103(1):40–43. doi: 10.1016/s0022-3476(83)80772-0. [DOI] [PubMed] [Google Scholar]
  20. Griffith J. K., Cordisco B. R., Lin C. W., LaManna J. C. Distribution of intracellular pH in the rat brain cortex after global ischemia as measured by color film histophotometry of neutral red. Brain Res. 1992 Feb 21;573(1):1–7. doi: 10.1016/0006-8993(92)90108-l. [DOI] [PubMed] [Google Scholar]
  21. Guerra-Romero L., Tureen J. H., Fournier M. A., Makrides V., Täuber M. G. Amino acids in cerebrospinal and brain interstitial fluid in experimental pneumococcal meningitis. Pediatr Res. 1993 May;33(5):510–513. doi: 10.1203/00006450-199305000-00018. [DOI] [PubMed] [Google Scholar]
  22. Ikeda H., Koga Y., Oda T., Kuwano K., Nakayama H., Ueno T., Toshima H., Michael L. H., Entman M. L. Free oxygen radicals contribute to platelet aggregation and cyclic flow variations in stenosed and endothelium-injured canine coronary arteries. J Am Coll Cardiol. 1994 Dec;24(7):1749–1756. doi: 10.1016/0735-1097(94)90183-x. [DOI] [PubMed] [Google Scholar]
  23. Kim Y. S., Sheldon R. A., Elliott B. R., Liu Q., Ferriero D. M., Täuber M. G. Brain injury in experimental neonatal meningitis due to group B streptococci. J Neuropathol Exp Neurol. 1995 Jul;54(4):531–539. doi: 10.1097/00005072-199507000-00007. [DOI] [PubMed] [Google Scholar]
  24. Koedel U., Bernatowicz A., Paul R., Frei K., Fontana A., Pfister H. W. Experimental pneumococcal meningitis: cerebrovascular alterations, brain edema, and meningeal inflammation are linked to the production of nitric oxide. Ann Neurol. 1995 Mar;37(3):313–323. doi: 10.1002/ana.410370307. [DOI] [PubMed] [Google Scholar]
  25. Kontos C. D., Wei E. P., Williams J. I., Kontos H. A., Povlishock J. T. Cytochemical detection of superoxide in cerebral inflammation and ischemia in vivo. Am J Physiol. 1992 Oct;263(4 Pt 2):H1234–H1242. doi: 10.1152/ajpheart.1992.263.4.H1234. [DOI] [PubMed] [Google Scholar]
  26. LaManna J. C., McCracken K. A. The use of neutral red as an intracellular pH indicator in rat brain cortex in vivo. Anal Biochem. 1984 Oct;142(1):117–125. doi: 10.1016/0003-2697(84)90525-6. [DOI] [PubMed] [Google Scholar]
  27. Lafon-Cazal M., Pietri S., Culcasi M., Bockaert J. NMDA-dependent superoxide production and neurotoxicity. Nature. 1993 Aug 5;364(6437):535–537. doi: 10.1038/364535a0. [DOI] [PubMed] [Google Scholar]
  28. Leib S. L., Kim Y. S., Ferriero D. M., Täuber M. G. Neuroprotective effect of excitatory amino acid antagonist kynurenic acid in experimental bacterial meningitis. J Infect Dis. 1996 Jan;173(1):166–171. doi: 10.1093/infdis/173.1.166. [DOI] [PubMed] [Google Scholar]
  29. Lo S. K., Janakidevi K., Lai L., Malik A. B. Hydrogen peroxide-induced increase in endothelial adhesiveness is dependent on ICAM-1 activation. Am J Physiol. 1993 Apr;264(4 Pt 1):L406–L412. doi: 10.1152/ajplung.1993.264.4.L406. [DOI] [PubMed] [Google Scholar]
  30. Masana Y., Yoshimine T., Fujita T., Maruno M., Kumura E., Hayakawa T. Reaction of microglial cells and macrophages after cortical incision in rats: effect of a synthesized free radical scavenger, (+/-)-N,N'-propylenedinicotinamide (AVS) Neurosci Res. 1995 Sep;23(2):217–221. doi: 10.1016/0168-0102(95)00936-n. [DOI] [PubMed] [Google Scholar]
  31. McKnight A. A., Keyes W. G., Hudak M. L., Jones M. D., Jr Oxygen free radicals and the cerebral arteriolar response to group B streptococci. Pediatr Res. 1992 Jun;31(6):640–644. doi: 10.1203/00006450-199206000-00020. [DOI] [PubMed] [Google Scholar]
  32. Melchiorri D., Reiter R. J., Sewerynek E., Chen L. D., Nisticó G. Melatonin reduces kainate-induced lipid peroxidation in homogenates of different brain regions. FASEB J. 1995 Sep;9(12):1205–1210. doi: 10.1096/fasebj.9.12.7672513. [DOI] [PubMed] [Google Scholar]
  33. Nelson C. W., Wei E. P., Povlishock J. T., Kontos H. A., Moskowitz M. A. Oxygen radicals in cerebral ischemia. Am J Physiol. 1992 Nov;263(5 Pt 2):H1356–H1362. doi: 10.1152/ajpheart.1992.263.5.H1356. [DOI] [PubMed] [Google Scholar]
  34. Novelli G. P. Oxygen radicals in experimental shock: effects of spin-trapping nitrones in ameliorating shock pathophysiology. Crit Care Med. 1992 Apr;20(4):499–507. doi: 10.1097/00003246-199204000-00012. [DOI] [PubMed] [Google Scholar]
  35. Odio C. M., Faingezicht I., Paris M., Nassar M., Baltodano A., Rogers J., Sáez-Llorens X., Olsen K. D., McCracken G. H., Jr The beneficial effects of early dexamethasone administration in infants and children with bacterial meningitis. N Engl J Med. 1991 May 30;324(22):1525–1531. doi: 10.1056/NEJM199105303242201. [DOI] [PubMed] [Google Scholar]
  36. Patel M., Day B. J., Crapo J. D., Fridovich I., McNamara J. O. Requirement for superoxide in excitotoxic cell death. Neuron. 1996 Feb;16(2):345–355. doi: 10.1016/s0896-6273(00)80052-5. [DOI] [PubMed] [Google Scholar]
  37. Pellegrini-Giampietro D. E., Cherici G., Alesiani M., Carla V., Moroni F. Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J Neurosci. 1990 Mar;10(3):1035–1041. doi: 10.1523/JNEUROSCI.10-03-01035.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Perry V. L., Young R. S., Aquila W. J., During M. J. Effect of experimental Escherichia coli meningitis on concentrations of excitatory and inhibitory amino acids in the rabbit brain: in vivo microdialysis study. Pediatr Res. 1993 Aug;34(2):187–191. doi: 10.1203/00006450-199308000-00017. [DOI] [PubMed] [Google Scholar]
  39. Pfister H. W., Borasio G. D., Dirnagl U., Bauer M., Einhäupl K. M. Cerebrovascular complications of bacterial meningitis in adults. Neurology. 1992 Aug;42(8):1497–1504. doi: 10.1212/wnl.42.8.1497. [DOI] [PubMed] [Google Scholar]
  40. Pfister H. W., Koedel U., Lorenzl S., Tomasz A. Antioxidants attenuate microvascular changes in the early phase of experimental pneumococcal meningitis in rats. Stroke. 1992 Dec;23(12):1798–1804. doi: 10.1161/01.str.23.12.1798. [DOI] [PubMed] [Google Scholar]
  41. Rabizadeh S., Gralla E. B., Borchelt D. R., Gwinn R., Valentine J. S., Sisodia S., Wong P., Lee M., Hahn H., Bredesen D. E. Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):3024–3028. doi: 10.1073/pnas.92.7.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Reynolds I. J., Hastings T. G. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci. 1995 May;15(5 Pt 1):3318–3327. doi: 10.1523/JNEUROSCI.15-05-03318.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rothstein J. D., Bristol L. A., Hosler B., Brown R. H., Jr, Kuncl R. W. Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4155–4159. doi: 10.1073/pnas.91.10.4155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schulz J. B., Henshaw D. R., Siwek D., Jenkins B. G., Ferrante R. J., Cipolloni P. B., Kowall N. W., Rosen B. R., Beal M. F. Involvement of free radicals in excitotoxicity in vivo. J Neurochem. 1995 May;64(5):2239–2247. doi: 10.1046/j.1471-4159.1995.64052239.x. [DOI] [PubMed] [Google Scholar]
  45. Schwartz M. D., Repine J. E., Abraham E. Xanthine oxidase-derived oxygen radicals increase lung cytokine expression in mice subjected to hemorrhagic shock. Am J Respir Cell Mol Biol. 1995 Apr;12(4):434–440. doi: 10.1165/ajrcmb.12.4.7695923. [DOI] [PubMed] [Google Scholar]
  46. Selman W. R., Ricci A. J., Crumrine R. C., LaManna J. C., Ratcheson R. A., Lust W. D. The evolution of focal ischemic damage: a metabolic analysis. Metab Brain Dis. 1990 Mar;5(1):33–44. doi: 10.1007/BF00996976. [DOI] [PubMed] [Google Scholar]
  47. Selman W. R., VanDerVeer C., Whittingham T. S., LaManna J. C., Lust W. D., Ratcheson R. A. Visually defined zones of focal ischemia in the rat brain. Neurosurgery. 1987 Dec;21(6):825–830. doi: 10.1227/00006123-198712000-00007. [DOI] [PubMed] [Google Scholar]
  48. Sen S., Goldman H., Morehead M., Murphy S., Phillis J. W. alpha-Phenyl-tert-butyl-nitrone inhibits free radical release in brain concussion. Free Radic Biol Med. 1994 Jun;16(6):685–691. doi: 10.1016/0891-5849(94)90183-x. [DOI] [PubMed] [Google Scholar]
  49. Thomas V. H., Hopkins I. J. Arteriographic demonstration of vascular lesions in the study of neurologic deficit in advanced Haemophilus influenzae meningitis. Dev Med Child Neurol. 1972 Dec;14(6):783–787. doi: 10.1111/j.1469-8749.1972.tb03321.x. [DOI] [PubMed] [Google Scholar]
  50. Troy C. M., Shelanski M. L. Down-regulation of copper/zinc superoxide dismutase causes apoptotic death in PC12 neuronal cells. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6384–6387. doi: 10.1073/pnas.91.14.6384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tureen J. H., Täuber M. G., Sande M. A. Effect of hydration status on cerebral blood flow and cerebrospinal fluid lactic acidosis in rabbits with experimental meningitis. J Clin Invest. 1992 Mar;89(3):947–953. doi: 10.1172/JCI115676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Täuber M. G., Borschberg U., Sande M. A. Influence of granulocytes on brain edema, intracranial pressure, and cerebrospinal fluid concentrations of lactate and protein in experimental meningitis. J Infect Dis. 1988 Mar;157(3):456–464. doi: 10.1093/infdis/157.3.456. [DOI] [PubMed] [Google Scholar]
  53. Täuber M. G., Burroughs M., Niemöller U. M., Kuster H., Borschberg U., Tuomanen E. Differences of pathophysiology in experimental meningitis caused by three strains of Streptococcus pneumoniae. J Infect Dis. 1991 Apr;163(4):806–811. doi: 10.1093/infdis/163.4.806. [DOI] [PubMed] [Google Scholar]
  54. Volterra A., Trotti D., Tromba C., Floridi S., Racagni G. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci. 1994 May;14(5 Pt 1):2924–2932. doi: 10.1523/JNEUROSCI.14-05-02924.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Yang C. S., Lin N. N., Tsai P. J., Liu L., Kuo J. S. In vivo evidence of hydroxyl radical formation induced by elevation of extracellular glutamate after cerebral ischemia in the cortex of anesthetized rats. Free Radic Biol Med. 1996;20(2):245–250. doi: 10.1016/0891-5849(95)02042-x. [DOI] [PubMed] [Google Scholar]
  56. Yue T. L., Gu J. L., Lysko P. G., Cheng H. Y., Barone F. C., Feuerstein G. Neuroprotective effects of phenyl-t-butyl-nitrone in gerbil global brain ischemia and in cultured rat cerebellar neurons. Brain Res. 1992 Mar 6;574(1-2):193–197. doi: 10.1016/0006-8993(92)90816-r. [DOI] [PubMed] [Google Scholar]
  57. Zhao Q., Pahlmark K., Smith M. L., Siesjö B. K. Delayed treatment with the spin trap alpha-phenyl-N-tert-butyl nitrone (PBN) reduces infarct size following transient middle cerebral artery occlusion in rats. Acta Physiol Scand. 1994 Nov;152(3):349–350. doi: 10.1111/j.1748-1716.1994.tb09816.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES