Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Dec 1;98(11):2648–2655. doi: 10.1172/JCI119086

Elevated blood pressure and enhanced myocardial contractility in mice with severe IGF-1 deficiency.

G Lembo 1, H A Rockman 1, J J Hunter 1, H Steinmetz 1, W J Koch 1, L Ma 1, M P Prinz 1, J Ross Jr 1, K R Chien 1, L Powell-Braxton 1
PMCID: PMC507725  PMID: 8958230

Abstract

To circumvent the embryonic lethality of a complete deficiency in insulin-like growth factor 1 (IGF-1), we generated mice homozygous for a site-specific insertional event that created a mutant IGF-1 allele (igf1m). These mice have IGF-1 levels 30% of wild type yet survive to adulthood, thereby allowing physiological analysis of the phenotype. Miniaturized catheterization technology revealed elevated conscious blood pressure in IGF-1(m/m) mice, and measurements of left ventricular contractility were increased. Adenylyl cyclase activity was enhanced in IGF-1(m/m) hearts, without an increase in beta-adrenergic receptor density, suggesting that crosstalk between IGF-1 and beta-adrenergic signaling pathways may mediate the increased contractility. The hypertrophic response of the left ventricular myocardium in response to aortic constriction, however, was preserved in IGF-1(m/m) mice. We conclude that chronic alterations in IGF-1 levels can selectively modulate blood pressure and left ventricular function, while not affecting adaptive myocardial hypertrophy in vivo.

Full Text

The Full Text of this article is available as a PDF (254.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. A., Mark A. L. The vasodilator action of insulin. Implications for the insulin hypothesis of hypertension. Hypertension. 1993 Feb;21(2):136–141. doi: 10.1161/01.hyp.21.2.136. [DOI] [PubMed] [Google Scholar]
  2. Baker J., Liu J. P., Robertson E. J., Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993 Oct 8;75(1):73–82. [PubMed] [Google Scholar]
  3. Bond R. A., Leff P., Johnson T. D., Milano C. A., Rockman H. A., McMinn T. R., Apparsundaram S., Hyek M. F., Kenakin T. P., Allen L. F. Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the beta 2-adrenoceptor. Nature. 1995 Mar 16;374(6519):272–276. doi: 10.1038/374272a0. [DOI] [PubMed] [Google Scholar]
  4. Brown L., Wyse B., Sernia C. Adrenoceptor-mediated cardiac and vascular responses in genetically growth hormone-deficient rats. Biochem Pharmacol. 1993 Jun 9;45(11):2223–2229. doi: 10.1016/0006-2952(93)90193-z. [DOI] [PubMed] [Google Scholar]
  5. Chien K. R. Cardiac muscle diseases in genetically engineered mice: evolution of molecular physiology. Am J Physiol. 1995 Sep;269(3 Pt 2):H755–H766. doi: 10.1152/ajpheart.1995.269.3.H755. [DOI] [PubMed] [Google Scholar]
  6. Chien K. R. Molecular advances in cardiovascular biology. Science. 1993 May 14;260(5110):916–917. doi: 10.1126/science.8493528. [DOI] [PubMed] [Google Scholar]
  7. Cicila G. T., Rapp J. P., Wang J. M., St Lezin E., Ng S. C., Kurtz T. W. Linkage of 11 beta-hydroxylase mutations with altered steroid biosynthesis and blood pressure in the Dahl rat. Nat Genet. 1993 Apr;3(4):346–353. doi: 10.1038/ng0493-346. [DOI] [PubMed] [Google Scholar]
  8. Cittadini A., Strömer H., Katz S. E., Clark R., Moses A. C., Morgan J. P., Douglas P. S. Differential cardiac effects of growth hormone and insulin-like growth factor-1 in the rat. A combined in vivo and in vitro evaluation. Circulation. 1996 Feb 15;93(4):800–809. doi: 10.1161/01.cir.93.4.800. [DOI] [PubMed] [Google Scholar]
  9. Copeland K. C., Nair K. S. Recombinant human insulin-like growth factor-I increases forearm blood flow. J Clin Endocrinol Metab. 1994 Jul;79(1):230–232. doi: 10.1210/jcem.79.1.8027233. [DOI] [PubMed] [Google Scholar]
  10. Czerwinski S. M., Novakofski J., Bechtel P. J. Is insulin-like growth factor gene expression modulated during cardiac hypertrophy? Med Sci Sports Exerc. 1993 Apr;25(4):495–500. [PubMed] [Google Scholar]
  11. Dilley R. J., Schwartz S. M. Vascular remodeling in the growth hormone transgenic mouse. Circ Res. 1989 Nov;65(5):1233–1240. doi: 10.1161/01.res.65.5.1233. [DOI] [PubMed] [Google Scholar]
  12. Donohue T. J., Dworkin L. D., Lango M. N., Fliegner K., Lango R. P., Benstein J. A., Slater W. R., Catanese V. M. Induction of myocardial insulin-like growth factor-I gene expression in left ventricular hypertrophy. Circulation. 1994 Feb;89(2):799–809. doi: 10.1161/01.cir.89.2.799. [DOI] [PubMed] [Google Scholar]
  13. Duerr R. L., Huang S., Miraliakbar H. R., Clark R., Chien K. R., Ross J., Jr Insulin-like growth factor-1 enhances ventricular hypertrophy and function during the onset of experimental cardiac failure. J Clin Invest. 1995 Feb;95(2):619–627. doi: 10.1172/JCI117706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Elias K. A., Ingle G. S., Burnier J. P., Hammonds R. G., McDowell R. S., Rawson T. E., Somers T. C., Stanley M. S., Cronin M. J. In vitro characterization of four novel classes of growth hormone-releasing peptide. Endocrinology. 1995 Dec;136(12):5694–5699. doi: 10.1210/endo.136.12.7588325. [DOI] [PubMed] [Google Scholar]
  15. Fazio S., Sabatini D., Capaldo B., Vigorito C., Giordano A., Guida R., Pardo F., Biondi B., Saccà L. A preliminary study of growth hormone in the treatment of dilated cardiomyopathy. N Engl J Med. 1996 Mar 28;334(13):809–814. doi: 10.1056/NEJM199603283341301. [DOI] [PubMed] [Google Scholar]
  16. Feldman R. D., Bierbrier G. S. Insulin-mediated vasodilation: impairment with increased blood pressure and body mass. Lancet. 1993 Sep 18;342(8873):707–709. doi: 10.1016/0140-6736(93)91708-t. [DOI] [PubMed] [Google Scholar]
  17. Fryburg D. A. Insulin-like growth factor I exerts growth hormone- and insulin-like actions on human muscle protein metabolism. Am J Physiol. 1994 Aug;267(2 Pt 1):E331–E336. doi: 10.1152/ajpendo.1994.267.2.E331. [DOI] [PubMed] [Google Scholar]
  18. Hadcock J. R., Port J. D., Gelman M. S., Malbon C. C. Cross-talk between tyrosine kinase and G-protein-linked receptors. Phosphorylation of beta 2-adrenergic receptors in response to insulin. J Biol Chem. 1992 Dec 25;267(36):26017–26022. [PubMed] [Google Scholar]
  19. Harrap S. B., Macpherson F., Wilson V. G., Davies D. L., Isaksson O. P., Folkow B., Lever A. F. Failure of chronic administration of growth hormone to affect blood pressure, vascular reactivity and sodium metabolism in normal rats. J Hypertens Suppl. 1988 Dec;6(4):S170–S172. doi: 10.1097/00004872-198812040-00050. [DOI] [PubMed] [Google Scholar]
  20. Hasty P., Rivera-Pérez J., Chang C., Bradley A. Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol Cell Biol. 1991 Sep;11(9):4509–4517. doi: 10.1128/mcb.11.9.4509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Haylor J., Singh I., el Nahas A. M. Nitric oxide synthesis inhibitor prevents vasodilation by insulin-like growth factor I. Kidney Int. 1991 Feb;39(2):333–335. doi: 10.1038/ki.1991.42. [DOI] [PubMed] [Google Scholar]
  22. Hirschberg R., Kopple J. D., Blantz R. C., Tucker B. J. Effects of recombinant human insulin-like growth factor I on glomerular dynamics in the rat. J Clin Invest. 1991 Apr;87(4):1200–1206. doi: 10.1172/JCI115119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hirschberg R., Kopple J. D. Effects of growth hormone and IGF-I on renal function. Kidney Int Suppl. 1989 Nov;27:S20–S26. [PubMed] [Google Scholar]
  24. Hwang D. L., Latus L. J., Lev-Ran A. Effects of platelet-contained growth factors (PDGF, EGF, IGF-I, and TGF-beta) on DNA synthesis in porcine aortic smooth muscle cells in culture. Exp Cell Res. 1992 Jun;200(2):358–360. doi: 10.1016/0014-4827(92)90183-9. [DOI] [PubMed] [Google Scholar]
  25. Ito H., Hiroe M., Hirata Y., Tsujino M., Adachi S., Shichiri M., Koike A., Nogami A., Marumo F. Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation. 1993 May;87(5):1715–1721. doi: 10.1161/01.cir.87.5.1715. [DOI] [PubMed] [Google Scholar]
  26. John S. W., Krege J. H., Oliver P. M., Hagaman J. R., Hodgin J. B., Pang S. C., Flynn T. G., Smithies O. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science. 1995 Feb 3;267(5198):679–681. doi: 10.1126/science.7839143. [DOI] [PubMed] [Google Scholar]
  27. Kajstura J., Cheng W., Reiss K., Anversa P. The IGF-1-IGF-1 receptor system modulates myocyte proliferation but not myocyte cellular hypertrophy in vitro. Exp Cell Res. 1994 Dec;215(2):273–283. doi: 10.1006/excr.1994.1343. [DOI] [PubMed] [Google Scholar]
  28. Kim H. S., Krege J. H., Kluckman K. D., Hagaman J. R., Hodgin J. B., Best C. F., Jennette J. C., Coffman T. M., Maeda N., Smithies O. Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2735–2739. doi: 10.1073/pnas.92.7.2735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Koch W. J., Rockman H. A., Samama P., Hamilton R. A., Bond R. A., Milano C. A., Lefkowitz R. J. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science. 1995 Jun 2;268(5215):1350–1353. doi: 10.1126/science.7761854. [DOI] [PubMed] [Google Scholar]
  30. Kurtz T. W. Genetic models of hypertension. Lancet. 1994 Jul 16;344(8916):167–168. doi: 10.1016/s0140-6736(94)92761-8. [DOI] [PubMed] [Google Scholar]
  31. Laakso M., Edelman S. V., Brechtel G., Baron A. D. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest. 1990 Jun;85(6):1844–1852. doi: 10.1172/JCI114644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Laakso M., Edelman S. V., Brechtel G., Baron A. D. Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM. Diabetes. 1992 Sep;41(9):1076–1083. doi: 10.2337/diab.41.9.1076. [DOI] [PubMed] [Google Scholar]
  33. Lieberman S. A., Bukar J., Chen S. A., Celniker A. C., Compton P. G., Cook J., Albu J., Perlman A. J., Hoffman A. R. Effects of recombinant human insulin-like growth factor-I (rhIGF-I) on total and free IGF-I concentrations, IGF-binding proteins, and glycemic response in humans. J Clin Endocrinol Metab. 1992 Jul;75(1):30–36. doi: 10.1210/jcem.75.1.1377706. [DOI] [PubMed] [Google Scholar]
  34. Liu J. P., Baker J., Perkins A. S., Robertson E. J., Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 1993 Oct 8;75(1):59–72. [PubMed] [Google Scholar]
  35. Luo W., Grupp I. L., Harrer J., Ponniah S., Grupp G., Duffy J. J., Doetschman T., Kranias E. G. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res. 1994 Sep;75(3):401–409. doi: 10.1161/01.res.75.3.401. [DOI] [PubMed] [Google Scholar]
  36. Milano C. A., Allen L. F., Rockman H. A., Dolber P. C., McMinn T. R., Chien K. R., Johnson T. D., Bond R. A., Lefkowitz R. J. Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science. 1994 Apr 22;264(5158):582–586. doi: 10.1126/science.8160017. [DOI] [PubMed] [Google Scholar]
  37. Powell-Braxton L., Hollingshead P., Warburton C., Dowd M., Pitts-Meek S., Dalton D., Gillett N., Stewart T. A. IGF-I is required for normal embryonic growth in mice. Genes Dev. 1993 Dec;7(12B):2609–2617. doi: 10.1101/gad.7.12b.2609. [DOI] [PubMed] [Google Scholar]
  38. Reiss K., Meggs L. G., Li P., Olivetti G., Capasso J. M., Anversa P. Upregulation of IGF1, IGF1-receptor, and late growth related genes in ventricular myocytes acutely after infarction in rats. J Cell Physiol. 1994 Jan;158(1):160–168. doi: 10.1002/jcp.1041580120. [DOI] [PubMed] [Google Scholar]
  39. Rockman H. A., Ono S., Ross R. S., Jones L. R., Karimi M., Bhargava V., Ross J., Jr, Chien K. R. Molecular and physiological alterations in murine ventricular dysfunction. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2694–2698. doi: 10.1073/pnas.91.7.2694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rockman H. A., Ross R. S., Harris A. N., Knowlton K. U., Steinhelper M. E., Field L. J., Ross J., Jr, Chien K. R. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8277–8281. doi: 10.1073/pnas.88.18.8277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smithies O., Maeda N. Gene targeting approaches to complex genetic diseases: atherosclerosis and essential hypertension. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5266–5272. doi: 10.1073/pnas.92.12.5266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. White M. F., Kahn C. R. The insulin signaling system. J Biol Chem. 1994 Jan 7;269(1):1–4. [PubMed] [Google Scholar]
  43. Wu H. Y., Jeng Y. Y., Yue C. J., Chyu K. Y., Hsueh W. A., Chan T. M. Endothelial-dependent vascular effects of insulin and insulin-like growth factor I in the perfused rat mesenteric artery and aortic ring. Diabetes. 1994 Aug;43(8):1027–1032. doi: 10.2337/diab.43.8.1027. [DOI] [PubMed] [Google Scholar]
  44. Wåhlander H., Isgaard J., Jennische E., Friberg P. Left ventricular insulin-like growth factor I increases in early renal hypertension. Hypertension. 1992 Jan;19(1):25–32. doi: 10.1161/01.hyp.19.1.25. [DOI] [PubMed] [Google Scholar]
  45. Yin F. C., Spurgeon H. A., Rakusan K., Weisfeldt M. L., Lakatta E. G. Use of tibial length to quantify cardiac hypertrophy: application in the aging rat. Am J Physiol. 1982 Dec;243(6):H941–H947. doi: 10.1152/ajpheart.1982.243.6.H941. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES