Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Dec 15;98(12):2764–2770. doi: 10.1172/JCI119102

Differences in endogenous peptides presented by HLA-B*2705 and B*2703 allelic variants. Implications for susceptibility to spondylarthropathies.

F Boisgérault 1, V Tieng 1, M C Stolzenberg 1, N Dulphy 1, I Khalil 1, R Tamouza 1, D Charron 1, A Toubert 1
PMCID: PMC507741  PMID: 8981922

Abstract

The association between HLA-B27 and spondylarthropathies is currently being reinvestigated in the light of HLA-B27 subtyping. At least 11 different subtypes have been described among which B*2703, B*2706, and B*2709 could be less closely associated with disease at the population level. Differences in the presentation of antigenic peptides by these subtypes could be related to differences in disease susceptibility. We focused our work on the comparison of B*2705 and B*2703 which differ at a single position at residue 59 in pocket A of the peptide binding groove. Endogenous peptides from the human C1R line transfected by B*2705 or B*2703 were acid-eluted and separated by HPLC. Major individual fractions were sequenced by Edman NH2-terminal degradation. Differences observed between B*2705 versus B*2703 individual ligands were confirmed in an in vitro stabilization assay with T2-B*2705 or B*2703 transfected cells in the presence of synthetic peptides. One B*2705 associated peptide is derived from the sequence 169-179 in the second extracellular domain of several HLA class I molecules including HLA-B27. This sequence (RRYLENGKETL) is highly homologous to a previously reported sequence (LRRYLENGK) sharing similarities with proteins from enteric bacteria. We show here that it is naturally presented as a major endogenous peptide by B*2705 and B*2702 disease-associated subtypes and not by B*2703.

Full Text

The Full Text of this article is available as a PDF (195.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen P. M. Peptides in positive and negative selection: a delicate balance. Cell. 1994 Feb 25;76(4):593–596. doi: 10.1016/0092-8674(94)90497-9. [DOI] [PubMed] [Google Scholar]
  2. Barouch D., Friede T., Stevanović S., Tussey L., Smith K., Rowland-Jones S., Braud V., McMichael A., Rammensee H. G. HLA-A2 subtypes are functionally distinct in peptide binding and presentation. J Exp Med. 1995 Dec 1;182(6):1847–1856. doi: 10.1084/jem.182.6.1847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bodmer J. G., Marsh S. G., Albert E. D., Bodmer W. F., Bontrop R. E., Charron D., Dupont B., Erlich H. A., Mach B., Mayr W. R. Nomenclature for factors of the HLA system, 1995. Tissue Antigens. 1995 Jul;46(1):1–18. doi: 10.1111/j.1399-0039.1995.tb02470.x. [DOI] [PubMed] [Google Scholar]
  4. Boisgerault F., Khalil I., Tieng V., Connan F., Tabary T., Cohen J. H., Choppin J., Charron D., Toubert A. Definition of the HLA-A29 peptide ligand motif allows prediction of potential T-cell epitopes from the retinal soluble antigen, a candidate autoantigen in birdshot retinopathy. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3466–3470. doi: 10.1073/pnas.93.8.3466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brewerton D. A., Hart F. D., Nicholls A., Caffrey M., James D. C., Sturrock R. D. Ankylosing spondylitis and HL-A 27. Lancet. 1973 Apr 28;1(7809):904–907. doi: 10.1016/s0140-6736(73)91360-3. [DOI] [PubMed] [Google Scholar]
  6. Brossart P., Bevan M. J. Selective activation of Fas/Fas ligand-mediated cytotoxicity by a self peptide. J Exp Med. 1996 Jun 1;183(6):2449–2458. doi: 10.1084/jem.183.6.2449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burmester G. R., Daser A., Kamradt T., Krause A., Mitchison N. A., Sieper J., Wolf N. Immunology of reactive arthritides. Annu Rev Immunol. 1995;13:229–250. doi: 10.1146/annurev.iy.13.040195.001305. [DOI] [PubMed] [Google Scholar]
  8. Cerundolo V., Alexander J., Anderson K., Lamb C., Cresswell P., McMichael A., Gotch F., Townsend A. Presentation of viral antigen controlled by a gene in the major histocompatibility complex. Nature. 1990 May 31;345(6274):449–452. doi: 10.1038/345449a0. [DOI] [PubMed] [Google Scholar]
  9. Colbert R. A., Rowland-Jones S. L., McMichael A. J., Frelinger J. A. Differences in peptide presentation between B27 subtypes: the importance of the P1 side chain in maintaining high affinity peptide binding to B*2703. Immunity. 1994 May;1(2):121–130. doi: 10.1016/1074-7613(94)90105-8. [DOI] [PubMed] [Google Scholar]
  10. D'Amato M., Fiorillo M. T., Carcassi C., Mathieu A., Zuccarelli A., Bitti P. P., Tosi R., Sorrentino R. Relevance of residue 116 of HLA-B27 in determining susceptibility to ankylosing spondylitis. Eur J Immunol. 1995 Nov;25(11):3199–3201. doi: 10.1002/eji.1830251133. [DOI] [PubMed] [Google Scholar]
  11. Ellis S. A., Taylor C., McMichael A. Recognition of HLA-B27 and related antigen by a monoclonal antibody. Hum Immunol. 1982 Aug;5(1):49–59. doi: 10.1016/0198-8859(82)90030-1. [DOI] [PubMed] [Google Scholar]
  12. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
  13. Hill A. V., Allsopp C. E., Kwiatkowski D., Anstey N. M., Greenwood B. M., McMichael A. J. HLA class I typing by PCR: HLA-B27 and an African B27 subtype. Lancet. 1991 Mar 16;337(8742):640–642. doi: 10.1016/0140-6736(91)92452-8. [DOI] [PubMed] [Google Scholar]
  14. Ignatowicz L., Kappler J., Marrack P. The repertoire of T cells shaped by a single MHC/peptide ligand. Cell. 1996 Feb 23;84(4):521–529. doi: 10.1016/s0092-8674(00)81028-4. [DOI] [PubMed] [Google Scholar]
  15. Jardetzky T. S., Lane W. S., Robinson R. A., Madden D. R., Wiley D. C. Identification of self peptides bound to purified HLA-B27. Nature. 1991 Sep 26;353(6342):326–329. doi: 10.1038/353326a0. [DOI] [PubMed] [Google Scholar]
  16. Khare S. D., Luthra H. S., David C. S. Spontaneous inflammatory arthritis in HLA-B27 transgenic mice lacking beta 2-microglobulin: a model of human spondyloarthropathies. J Exp Med. 1995 Oct 1;182(4):1153–1158. doi: 10.1084/jem.182.4.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lopez De Castro J. A. HLA-B27 and HLA-B73 polymorphism and its role on antigenicity, peptide presentation, and disease susceptibility. Clin Rheumatol. 1996 Jan;15 (Suppl 1):67–71. doi: 10.1007/BF03342650. [DOI] [PubMed] [Google Scholar]
  18. López-Larrea C., Sujirachato K., Mehra N. K., Chiewsilp P., Isarangkura D., Kanga U., Dominguez O., Coto E., Penã M., Setién F. HLA-B27 subtypes in Asian patients with ankylosing spondylitis. Evidence for new associations. Tissue Antigens. 1995 Mar;45(3):169–176. doi: 10.1111/j.1399-0039.1995.tb02436.x. [DOI] [PubMed] [Google Scholar]
  19. Madden D. R. The three-dimensional structure of peptide-MHC complexes. Annu Rev Immunol. 1995;13:587–622. doi: 10.1146/annurev.iy.13.040195.003103. [DOI] [PubMed] [Google Scholar]
  20. Malnati M. S., Peruzzi M., Parker K. C., Biddison W. E., Ciccone E., Moretta A., Long E. O. Peptide specificity in the recognition of MHC class I by natural killer cell clones. Science. 1995 Feb 17;267(5200):1016–1018. doi: 10.1126/science.7863326. [DOI] [PubMed] [Google Scholar]
  21. Neisig A., Wubbolts R., Zang X., Melief C., Neefjes J. Allele-specific differences in the interaction of MHC class I molecules with transporters associated with antigen processing. J Immunol. 1996 May 1;156(9):3196–3206. [PubMed] [Google Scholar]
  22. Rognan D., Scapozza L., Folkers G., Daser A. Rational design of nonnatural peptides as high-affinity ligands for the HLA-B*2705 human leukocyte antigen. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):753–757. doi: 10.1073/pnas.92.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rojo S., García F., Villadangos J. A., López de Castro J. A. Changes in the repertoire of peptides bound to HLA-B27 subtypes and to site-specific mutants inside and outside pocket B. J Exp Med. 1993 Mar 1;177(3):613–620. doi: 10.1084/jem.177.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rötzschke O., Falk K., Stevanović S., Gnau V., Jung G., Rammensee H. G. Dominant aromatic/aliphatic C-terminal anchor in HLA-B*2702 and B*2705 peptide motifs. Immunogenetics. 1994;39(1):74–77. doi: 10.1007/BF00171803. [DOI] [PubMed] [Google Scholar]
  25. Schlosstein L., Terasaki P. I., Bluestone R., Pearson C. M. High association of an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med. 1973 Apr 5;288(14):704–706. doi: 10.1056/NEJM197304052881403. [DOI] [PubMed] [Google Scholar]
  26. Scofield R. H., Kurien B., Gross T., Warren W. L., Harley J. B. HLA-B27 binding of peptide from its own sequence and similar peptides from bacteria: implications for spondyloarthropathies. Lancet. 1995 Jun 17;345(8964):1542–1544. doi: 10.1016/s0140-6736(95)91089-1. [DOI] [PubMed] [Google Scholar]
  27. Scofield R. H., Warren W. L., Koelsch G., Harley J. B. A hypothesis for the HLA-B27 immune dysregulation in spondyloarthropathy: contributions from enteric organisms, B27 structure, peptides bound by B27, and convergent evolution. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9330–9334. doi: 10.1073/pnas.90.20.9330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stuber G., Modrow S., Höglund P., Franksson L., Elvin J., Wolf H., Kärre K., Klein G. Assessment of major histocompatibility complex class I interaction with Epstein-Barr virus and human immunodeficiency virus peptides by elevation of membrane H-2 and HLA in peptide loading-deficient cells. Eur J Immunol. 1992 Oct;22(10):2697–2703. doi: 10.1002/eji.1830221033. [DOI] [PubMed] [Google Scholar]
  29. Sudo T., Kamikawaji N., Kimura A., Date Y., Savoie C. J., Nakashima H., Furuichi E., Kuhara S., Sasazuki T. Differences in MHC class I self peptide repertoires among HLA-A2 subtypes. J Immunol. 1995 Nov 15;155(10):4749–4756. [PubMed] [Google Scholar]
  30. Suh W. K., Cohen-Doyle M. F., Fruh K., Wang K., Peterson P. A., Williams D. B. Interaction of MHC class I molecules with the transporter associated with antigen processing. Science. 1994 May 27;264(5163):1322–1326. doi: 10.1126/science.8191286. [DOI] [PubMed] [Google Scholar]
  31. Taurog J. D., Maika S. D., Simmons W. A., Breban M., Hammer R. E. Susceptibility to inflammatory disease in HLA-B27 transgenic rat lines correlates with the level of B27 expression. J Immunol. 1993 May 1;150(9):4168–4178. [PubMed] [Google Scholar]
  32. Taurog J. D., Richardson J. A., Croft J. T., Simmons W. A., Zhou M., Fernández-Sueiro J. L., Balish E., Hammer R. E. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994 Dec 1;180(6):2359–2364. doi: 10.1084/jem.180.6.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Toivanen A., Toivanen P. Epidemiologic, clinical, and therapeutic aspects of reactive arthritis and ankylosing spondylitis. Curr Opin Rheumatol. 1995 Jul;7(4):279–283. doi: 10.1097/00002281-199507000-00003. [DOI] [PubMed] [Google Scholar]
  34. Toubert A., Raffoux C., Boretto J., Sire J., Sodoyer R., Thurau S. R., Amor B., Colombani J., Lemonnier F. A., Jordan B. R. Epitope mapping of HLA-B27 and HLA-B7 antigens by using intradomain recombinants. J Immunol. 1988 Oct 1;141(7):2503–2509. [PubMed] [Google Scholar]
  35. Villadangos J. A., Galocha B., García-Hoyo R., López D., García F., López de Castro J. A. Structure of HLA-B27-specific T cell epitopes. Antigen presentation in B*2703 is limited mostly to a subset of the antigenic determinants on B*2705. Eur J Immunol. 1994 Oct;24(10):2548–2555. doi: 10.1002/eji.1830241043. [DOI] [PubMed] [Google Scholar]
  36. Villadangos J. A., Galocha B., García F., Albar J. P., López de Castro J. A. Modulation of peptide binding by HLA-B27 polymorphism in pockets A and B, and peptide specificity of B*2703. Eur J Immunol. 1995 Aug;25(8):2370–2377. doi: 10.1002/eji.1830250837. [DOI] [PubMed] [Google Scholar]
  37. Wucherpfennig K. W., Strominger J. L. Selective binding of self peptides to disease-associated major histocompatibility complex (MHC) molecules: a mechanism for MHC-linked susceptibility to human autoimmune diseases. J Exp Med. 1995 May 1;181(5):1597–1601. doi: 10.1084/jem.181.5.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zemmour J., Little A. M., Schendel D. J., Parham P. The HLA-A,B "negative" mutant cell line C1R expresses a novel HLA-B35 allele, which also has a point mutation in the translation initiation codon. J Immunol. 1992 Mar 15;148(6):1941–1948. [PubMed] [Google Scholar]
  39. van Endert P. M., Tampé R., Meyer T. H., Tisch R., Bach J. F., McDevitt H. O. A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity. 1994 Sep;1(6):491–500. doi: 10.1016/1074-7613(94)90091-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES