Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Dec 15;98(12):2801–2804. doi: 10.1172/JCI119107

Long-lived and transferable tumor immunity in mice after targeted interleukin-2 therapy.

J C Becker 1, N Varki 1, S D Gillies 1, K Furukawa 1, R A Reisfeld 1
PMCID: PMC507746  PMID: 8981927

Abstract

A major goal of tumor immunotherapy is the induction of tumor-specific T cell responses that are effective in eradicating disseminated tumor, as well as mounting a persistent tumor-protective immunity. We demonstrate here that a genetically engineered fusion protein consisting of human/mouse chimeric anti-ganglioside GD2 antibody and human interleukin-2 is able to induce eradication of established B78-D14 melanoma metastases in immunocompetent syngeneic C57BL/6J mice. This therapeutic effect is mediated by host immune cells, particularly CD8+ T cells and is associated with the induction of a long-lived immunity preventing tumor growth in the majority of animals when challenged up to four months later with B78-D14 cells. This effect was tumor-specific, since no cross-protection against syngeneic, ganglioside GD2+ EL-4 thymoma cells was observed. Furthermore, this tumor-specific protection can be transmitted horizontally to naive, syngeneic SCID mice by passive transfer of CD8+ T lymphocytes derived from immune animals. These results suggest that antibody-targeted delivery of cytokines provides a means to elicit effective immune responses against established tumors in the immunotherapy of neoplastic disease.

Full Text

The Full Text of this article is available as a PDF (255.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker J. C., Pancook J. D., Gillies S. D., Furukawa K., Reisfeld R. A. T cell-mediated eradication of murine metastatic melanoma induced by targeted interleukin 2 therapy. J Exp Med. 1996 May 1;183(5):2361–2366. doi: 10.1084/jem.183.5.2361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Becker J. C., Varki N., Gillies S. D., Furukawa K., Reisfeld R. A. An antibody-interleukin 2 fusion protein overcomes tumor heterogeneity by induction of a cellular immune response. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7826–7831. doi: 10.1073/pnas.93.15.7826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dranoff G., Mulligan R. C. Gene transfer as cancer therapy. Adv Immunol. 1995;58:417–454. doi: 10.1016/s0065-2776(08)60624-0. [DOI] [PubMed] [Google Scholar]
  4. George A. J., Spooner R. A., Epenetos A. A. Applications of monoclonal antibodies in clinical oncology. Immunol Today. 1994 Dec;15(12):559–561. doi: 10.1016/0167-5699(94)90216-X. [DOI] [PubMed] [Google Scholar]
  5. Ghetie M. A., Vitetta E. S. Recent developments in immunotoxin therapy. Curr Opin Immunol. 1994 Oct;6(5):707–714. doi: 10.1016/0952-7915(94)90073-6. [DOI] [PubMed] [Google Scholar]
  6. Gillies S. D., Lo K. M., Wesolowski J. High-level expression of chimeric antibodies using adapted cDNA variable region cassettes. J Immunol Methods. 1989 Dec 20;125(1-2):191–202. doi: 10.1016/0022-1759(89)90093-8. [DOI] [PubMed] [Google Scholar]
  7. Gillies S. D., Reilly E. B., Lo K. M., Reisfeld R. A. Antibody-targeted interleukin 2 stimulates T-cell killing of autologous tumor cells. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1428–1432. doi: 10.1073/pnas.89.4.1428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gillies S. D., Young D., Lo K. M., Foley S. F., Reisfeld R. A. Expression of genetically engineered immunoconjugates of lymphotoxin and a chimeric anti-ganglioside GD2 antibody. Hybridoma. 1991 Jun;10(3):347–356. doi: 10.1089/hyb.1991.10.347. [DOI] [PubMed] [Google Scholar]
  9. Haraguchi M., Yamashiro S., Yamamoto A., Furukawa K., Takamiya K., Lloyd K. O., Shiku H., Furukawa K. Isolation of GD3 synthase gene by expression cloning of GM3 alpha-2,8-sialyltransferase cDNA using anti-GD2 monoclonal antibody. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10455–10459. doi: 10.1073/pnas.91.22.10455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Maas R. A., Dullens H. F., Den Otter W. Interleukin-2 in cancer treatment: disappointing or (still) promising? A review. Cancer Immunol Immunother. 1993;36(3):141–148. doi: 10.1007/BF01741084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maass G., Schmidt W., Berger M., Schilcher F., Koszik F., Schneeberger A., Stingl G., Birnstiel M. L., Schweighoffer T. Priming of tumor-specific T cells in the draining lymph nodes after immunization with interleukin 2-secreting tumor cells: three consecutive stages may be required for successful tumor vaccination. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5540–5544. doi: 10.1073/pnas.92.12.5540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mackay C. R. T-cell memory: the connection between function, phenotype and migration pathways. Immunol Today. 1991 Jun;12(6):189–192. doi: 10.1016/0167-5699(91)90051-T. [DOI] [PubMed] [Google Scholar]
  13. Nair S., Buiting A. M., Rouse R. J., Van Rooijen N., Huang L., Rouse B. T. Role of macrophages and dendritic cells in primary cytotoxic T lymphocyte responses. Int Immunol. 1995 Apr;7(4):679–688. doi: 10.1093/intimm/7.4.679. [DOI] [PubMed] [Google Scholar]
  14. Pardoll D. M. Paracrine cytokine adjuvants in cancer immunotherapy. Annu Rev Immunol. 1995;13:399–415. doi: 10.1146/annurev.iy.13.040195.002151. [DOI] [PubMed] [Google Scholar]
  15. Paul W. E., Seder R. A. Lymphocyte responses and cytokines. Cell. 1994 Jan 28;76(2):241–251. doi: 10.1016/0092-8674(94)90332-8. [DOI] [PubMed] [Google Scholar]
  16. Prehn R. T., Bartlett G. L. Surveillance, latency and the two levels of MCA-induced tumor immunogenicity. Int J Cancer. 1987 Jan 15;39(1):106–110. doi: 10.1002/ijc.2910390119. [DOI] [PubMed] [Google Scholar]
  17. Rosenberg S. A., Packard B. S., Aebersold P. M., Solomon D., Topalian S. L., Toy S. T., Simon P., Lotze M. T., Yang J. C., Seipp C. A. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988 Dec 22;319(25):1676–1680. doi: 10.1056/NEJM198812223192527. [DOI] [PubMed] [Google Scholar]
  18. Sprent J. T and B memory cells. Cell. 1994 Jan 28;76(2):315–322. doi: 10.1016/0092-8674(94)90338-7. [DOI] [PubMed] [Google Scholar]
  19. Van Pel A., Boon T. Protection against a nonimmunogenic mouse leukemia by an immunogenic variant obtained by mutagenesis. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4718–4722. doi: 10.1073/pnas.79.15.4718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Walunas T. L., Bruce D. S., Dustin L., Loh D. Y., Bluestone J. A. Ly-6C is a marker of memory CD8+ T cells. J Immunol. 1995 Aug 15;155(4):1873–1883. [PubMed] [Google Scholar]
  21. Winkelhake J. L., Gauny S. S. Human recombinant interleukin-2 as an experimental therapeutic. Pharmacol Rev. 1990 Mar;42(1):1–28. [PubMed] [Google Scholar]
  22. Zatloukal K., Schneeberger A., Berger M., Schmidt W., Koszik F., Kutil R., Cotten M., Wagner E., Buschle M., Maass G. Elicitation of a systemic and protective anti-melanoma immune response by an IL-2-based vaccine. Assessment of critical cellular and molecular parameters. J Immunol. 1995 Apr 1;154(7):3406–3419. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES