Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Dec 15;98(12):2813–2818. doi: 10.1172/JCI119109

An N-linked high-mannose type oligosaccharide, expressed at the major outer membrane protein of Chlamydia trachomatis, mediates attachment and infectivity of the microorganism to HeLa cells.

C Kuo 1, N Takahashi 1, A F Swanson 1, Y Ozeki 1, S Hakomori 1
PMCID: PMC507748  PMID: 8981929

Abstract

The structure of the carbohydrate of the 40-kD major outer membrane component of Chlamydia trachomatis and its role in defining infectivity of the organism were investigated. The oligosaccharides were released from the glycoprotein by N-glycanase digestion, coupled to a 2-aminopyridyl residue, and subjected to two-dimensional sugar mapping technique. The major fractions consisted of "high-mannose type" oligosaccharides containing 8-9 mannose residues. Bi- and tri-antennary "complex type" oligosaccharides having terminal galactose were detected as minor components. These oligosaccharides were N-linked and contained no sialic acid. This structural profile is consistent with our previous characterization based on lectin-binding and glycosidase digestion. Functional specificity of identified chlamydial oligosaccharides was analyzed using glycopeptides fractionated from ovalbumin and structurally defined oligosaccharides from other sources. The glycopeptide fraction having high-mannose type oligosaccharide, as compared to those having complex or hybrid-type, showed a stronger inhibitory effect on attachment and infectivity of chlamydial organisms to HeLa cells. Among high-mannose type oligosaccharides, the strongest inhibition was observed with mannose 8 as compared with mannose 6, 7, or 9. These results indicate that a specific high-mannose type oligosaccharide linked to the major outer membrane protein of C. trachomatis mediates attachment and infectivity of the organism to HeLa cells.

Full Text

The Full Text of this article is available as a PDF (181.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Byrne G. I., Stephens R. S., Ada G., Caldwell H. D., Su H., Morrison R. P., Van der Pol B., Bavoil P., Bobo L., Everson S. Workshop on in vitro neutralization of Chlamydia trachomatis: summary of proceedings. J Infect Dis. 1993 Aug;168(2):415–420. doi: 10.1093/infdis/168.2.415. [DOI] [PubMed] [Google Scholar]
  2. Caldwell H. D., Judd R. C. Structural analysis of chlamydial major outer membrane proteins. Infect Immun. 1982 Dec;38(3):960–968. doi: 10.1128/iai.38.3.960-968.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caldwell H. D., Perry L. J. Neutralization of Chlamydia trachomatis infectivity with antibodies to the major outer membrane protein. Infect Immun. 1982 Nov;38(2):745–754. doi: 10.1128/iai.38.2.745-754.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Finne J., Krusius T. Preparation and fractionation of glycopeptides. Methods Enzymol. 1982;83:269–277. doi: 10.1016/0076-6879(82)83020-6. [DOI] [PubMed] [Google Scholar]
  5. Krusius T., Finne J., Rauvala H. The structural basis of the different affinities of two types of acidic N-glycosidic glycopeptides for concanavalin A--sepharose. FEBS Lett. 1976 Nov 15;72(1):117–120. doi: 10.1016/0014-5793(76)80911-8. [DOI] [PubMed] [Google Scholar]
  6. Kuo C. C., Grayston T. Interaction of Chlamydia trachomatis organisms and HeLa 229 cells. Infect Immun. 1976 Apr;13(4):1103–1109. doi: 10.1128/iai.13.4.1103-1109.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kuo C. C., Wang S. P., Grayston J. T. Effect of polycations, polyanions and neuraminidase on the infectivity of trachoma-inclusin conjunctivitis and lymphogranuloma venereum organisms HeLa cells: sialic acid residues as possible receptors for trachoma-inclusion conjunction. Infect Immun. 1973 Jul;8(1):74–79. doi: 10.1128/iai.8.1.74-79.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lucero M. E., Kuo C. C. Neutralization of Chlamydia trachomatis cell culture infection by serovar-specific monoclonal antibodies. Infect Immun. 1985 Nov;50(2):595–597. doi: 10.1128/iai.50.2.595-597.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Newhall W. J., Jones R. B. Disulfide-linked oligomers of the major outer membrane protein of chlamydiae. J Bacteriol. 1983 May;154(2):998–1001. doi: 10.1128/jb.154.2.998-1001.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Puolakkainen M., Parker J., Kuo C. C., Grayston J. T., Campbell L. A. Further characterization of Chlamydia pneumoniae specific monoclonal antibodies. Microbiol Immunol. 1995;39(8):551–554. doi: 10.1111/j.1348-0421.1995.tb02241.x. [DOI] [PubMed] [Google Scholar]
  11. Swanson A. F., Kuo C. C. Binding of the glycan of the major outer membrane protein of Chlamydia trachomatis to HeLa cells. Infect Immun. 1994 Jan;62(1):24–28. doi: 10.1128/iai.62.1.24-28.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Swanson A. F., Kuo C. C. Evidence that the major outer membrane protein of Chlamydia trachomatis is glycosylated. Infect Immun. 1991 Jun;59(6):2120–2125. doi: 10.1128/iai.59.6.2120-2125.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Swanson A. F., Kuo C. C. Identification of lectin-binding proteins in Chlamydia species. Infect Immun. 1990 Feb;58(2):502–507. doi: 10.1128/iai.58.2.502-507.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Swanson A. F., Kuo C. C. The characterization of lectin-binding proteins of Chlamydia trachomatis as glycoproteins. Microb Pathog. 1991 Jun;10(6):465–473. doi: 10.1016/0882-4010(91)90112-n. [DOI] [PubMed] [Google Scholar]
  15. Taylor M. E., Conary J. T., Lennartz M. R., Stahl P. D., Drickamer K. Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. J Biol Chem. 1990 Jul 25;265(21):12156–12162. [PubMed] [Google Scholar]
  16. Tomiya N., Awaya J., Kurono M., Endo S., Arata Y., Takahashi N. Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Anal Biochem. 1988 May 15;171(1):73–90. doi: 10.1016/0003-2697(88)90126-1. [DOI] [PubMed] [Google Scholar]
  17. Wieland F. Structure and biosynthesis of prokaryotic glycoproteins. Biochimie. 1988 Nov;70(11):1493–1504. doi: 10.1016/0300-9084(88)90286-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES