Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Dec 15;98(12):2838–2844. doi: 10.1172/JCI119112

Congenital hypothyroid goiter with deficient thyroglobulin. Identification of an endoplasmic reticulum storage disease with induction of molecular chaperones.

G Medeiros-Neto 1, P S Kim 1, S E Yoo 1, J Vono 1, H M Targovnik 1, R Camargo 1, S A Hossain 1, P Arvan 1
PMCID: PMC507751  PMID: 8981932

Abstract

Recent advances in understanding the molecular pathogenesis of congenital hypothyroid goiter in cog/cog mice, have raised important questions concerning the maturation of thyroglobulin (the thyroid prohormone) in certain human kindreds with congenital goiter. We have now examined affected siblings from two unrelated families that synthesize an apparently normally glycosylated, > 300 kD immunoreactive thyroglobulin, yet have a reduced quantity of intraglandular thyroglobulin and that secreted into the circulation. From thyroid tissues of the four patients, light microscopic approaches demonstrated presence of intracellular thyroglobulin despite its absence in thyroid follicle lumina, while electron microscopy indicated abnormal distention of the endoplasmic reticulum (ER). We have confirmed biochemically that most intrathyroidal thyroglobulin fails to reach the (Golgi) compartment where complex carbohydrate modification takes place. Moreover, the disease in the affected patients is associated with massive induction of specific ER molecular chaperones including the hsp90 homolog, GRP94, and the hsp70 homolog, BiP. The data suggest that these patients synthesize a mutant thyroglobulin which is defective for folding/assembly, leading to a markedly reduced ability to export the protein from the ER. Thus, these kindreds suffer from a thyroid ER storage disease, a cell biological defect phenotypically indistinguishable from that found in cog/cog mice.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvan P., Lee J. Regulated and constitutive protein targeting can be distinguished by secretory polarity in thyroid epithelial cells. J Cell Biol. 1991 Feb;112(3):365–376. doi: 10.1083/jcb.112.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Basche M., Beamer W. G., Schneider A. B. Abnormal properties of thyroglobulin in mice with inherited congenital goiter (cog/cog). Endocrinology. 1989 Apr;124(4):1822–1829. doi: 10.1210/endo-124-4-1822. [DOI] [PubMed] [Google Scholar]
  3. Beamer W. G., Maltais L. J., DeBaets M. H., Eicher E. M. Inherited congenital goiter in mice. Endocrinology. 1987 Feb;120(2):838–840. doi: 10.1210/endo-120-2-838. [DOI] [PubMed] [Google Scholar]
  4. Bole D. G., Hendershot L. M., Kearney J. F. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol. 1986 May;102(5):1558–1566. doi: 10.1083/jcb.102.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonadio J., Byers P. H. Subtle structural alterations in the chains of type I procollagen produce osteogenesis imperfecta type II. Nature. 1985 Jul 25;316(6026):363–366. doi: 10.1038/316363a0. [DOI] [PubMed] [Google Scholar]
  6. Bonifacino J. S., Lippincott-Schwartz J. Degradation of proteins within the endoplasmic reticulum. Curr Opin Cell Biol. 1991 Aug;3(4):592–600. doi: 10.1016/0955-0674(91)90028-w. [DOI] [PubMed] [Google Scholar]
  7. Booth C., Koch G. L. Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell. 1989 Nov 17;59(4):729–737. doi: 10.1016/0092-8674(89)90019-6. [DOI] [PubMed] [Google Scholar]
  8. Cabrer B., Brocas H., Perez-Castillo A., Pohl V., Navas J. J., Targovnik H., Centenera J. A., Vassart G. Normal level of thyroglobulin messenger ribonucleic acid in a human congenital goiter with thyroglobulin deficiency. J Clin Endocrinol Metab. 1986 Oct;63(4):931–940. doi: 10.1210/jcem-63-4-931. [DOI] [PubMed] [Google Scholar]
  9. Callea F., Brisigotti M., Fabbretti G., Bonino F., Desmet V. J. Hepatic endoplasmic reticulum storage diseases. Liver. 1992 Dec;12(6):357–362. doi: 10.1111/j.1600-0676.1992.tb00589.x. [DOI] [PubMed] [Google Scholar]
  10. Cox J. S., Shamu C. E., Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell. 1993 Jun 18;73(6):1197–1206. doi: 10.1016/0092-8674(93)90648-a. [DOI] [PubMed] [Google Scholar]
  11. Dorner A. J., Krane M. G., Kaufman R. J. Reduction of endogenous GRP78 levels improves secretion of a heterologous protein in CHO cells. Mol Cell Biol. 1988 Oct;8(10):4063–4070. doi: 10.1128/mcb.8.10.4063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dorner A. J., Wasley L. C., Kaufman R. J. Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J. 1992 Apr;11(4):1563–1571. doi: 10.1002/j.1460-2075.1992.tb05201.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fogelfeld L., Harel G., Beamer W. G., Schneider A. B. Low-molecular-weight iodoproteins in the congenital goiters of cog/cog mice. Thyroid. 1992 Winter;2(4):329–335. doi: 10.1089/thy.1992.2.329. [DOI] [PubMed] [Google Scholar]
  14. Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  15. Hammond C., Helenius A. Quality control in the secretory pathway. Curr Opin Cell Biol. 1995 Aug;7(4):523–529. doi: 10.1016/0955-0674(95)80009-3. [DOI] [PubMed] [Google Scholar]
  16. Helenius A., Marquardt T., Braakman I. The endoplasmic reticulum as a protein-folding compartment. Trends Cell Biol. 1992 Aug;2(8):227–231. doi: 10.1016/0962-8924(92)90309-b. [DOI] [PubMed] [Google Scholar]
  17. Jensen T. J., Loo M. A., Pind S., Williams D. B., Goldberg A. L., Riordan J. R. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell. 1995 Oct 6;83(1):129–135. doi: 10.1016/0092-8674(95)90241-4. [DOI] [PubMed] [Google Scholar]
  18. Kim P. S., Arvan P. Calnexin and BiP act as sequential molecular chaperones during thyroglobulin folding in the endoplasmic reticulum. J Cell Biol. 1995 Jan;128(1-2):29–38. doi: 10.1083/jcb.128.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kim P. S., Arvan P. Folding and assembly of newly synthesized thyroglobulin occurs in a pre-Golgi compartment. J Biol Chem. 1991 Jul 5;266(19):12412–12418. [PubMed] [Google Scholar]
  20. Kim P. S., Bole D., Arvan P. Transient aggregation of nascent thyroglobulin in the endoplasmic reticulum: relationship to the molecular chaperone, BiP. J Cell Biol. 1992 Aug;118(3):541–549. doi: 10.1083/jcb.118.3.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kim P. S., Kim K. R., Arvan P. Disulfide-linked aggregation of thyroglobulin normally occurs during nascent protein folding. Am J Physiol. 1993 Sep;265(3 Pt 1):C704–C711. doi: 10.1152/ajpcell.1993.265.3.C704. [DOI] [PubMed] [Google Scholar]
  22. Kim P. S., Kwon O. Y., Arvan P. An endoplasmic reticulum storage disease causing congenital goiter with hypothyroidism. J Cell Biol. 1996 May;133(3):517–527. doi: 10.1083/jcb.133.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Knittler M. R., Haas I. G. Interaction of BiP with newly synthesized immunoglobulin light chain molecules: cycles of sequential binding and release. EMBO J. 1992 Apr;11(4):1573–1581. doi: 10.1002/j.1460-2075.1992.tb05202.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kuliawat R., Arvan P. Intracellular iodination of thyroglobulin in filter-polarized thyrocytes leads to the synthesis and basolateral secretion of thyroid hormone. J Biol Chem. 1994 Feb 18;269(7):4922–4927. [PubMed] [Google Scholar]
  25. Leite Z., Carneiro P., Halpern A., Medeiros-Neto G. Reduced serum thyroglobulin response to bovine TSH in malignant hypofunctioning solid thyroid nodules: comparison to benign nodular disease. J Endocrinol Invest. 1987 Jun;10(3):255–259. doi: 10.1007/BF03348125. [DOI] [PubMed] [Google Scholar]
  26. Lissitzky S., Torresani J., Burrow G. N., Bouchilloux S., Chabaud O. Defective thyroglobulin export as a cause of congenital goitre. Clin Endocrinol (Oxf) 1975 Jul;4(4):363–392. doi: 10.1111/j.1365-2265.1975.tb01545.x. [DOI] [PubMed] [Google Scholar]
  27. Lodish H. F., Kong N. Cyclosporin A inhibits an initial step in folding of transferrin within the endoplasmic reticulum. J Biol Chem. 1991 Aug 15;266(23):14835–14838. [PubMed] [Google Scholar]
  28. Malthièry Y., Marriq C., Bergé-Lefranc J. L., Franc J. L., Henry M., Lejeune P. J., Ruf J., Lissitzky S. Thyroglobulin structure and function: recent advances. Biochimie. 1989 Feb;71(2):195–209. doi: 10.1016/0300-9084(89)90057-6. [DOI] [PubMed] [Google Scholar]
  29. Marquardt T., Hebert D. N., Helenius A. Post-translational folding of influenza hemagglutinin in isolated endoplasmic reticulum-derived microsomes. J Biol Chem. 1993 Sep 15;268(26):19618–19625. [PubMed] [Google Scholar]
  30. McCracken A. A., Brodsky J. L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J Cell Biol. 1996 Feb;132(3):291–298. doi: 10.1083/jcb.132.3.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Medeiros-Neto G. A., Marcondes J. A., Cavaliere H., Wajchenberg B. L., Knobel M. Serum thyroglobulin (Tg) stimulation with bovine TSH: a useful test for diagnosis of congenital goitrous hypothyroidism due to defective Tg synthesis. Acta Endocrinol (Copenh) 1985 Sep;110(1):61–65. doi: 10.1530/acta.0.1100061. [DOI] [PubMed] [Google Scholar]
  32. Medeiros-Neto G., Targovnik H. M., Vassart G. Defective thyroglobulin synthesis and secretion causing goiter and hypothyroidism. Endocr Rev. 1993 Apr;14(2):165–183. doi: 10.1210/edrv-14-2-165. [DOI] [PubMed] [Google Scholar]
  33. Medeiros-Neto G., Targovnik H., Knobel M., Propato F., Varela V., Alkmin M., Barbosa S., Wajchenberg B. L. Qualitative and quantitative defects of thyroglobulin resulting in congenital goiter. Absence of gross gene deletion of coding sequences in the TG gene structure. J Endocrinol Invest. 1989 Dec;12(11):805–813. doi: 10.1007/BF03350067. [DOI] [PubMed] [Google Scholar]
  34. Melnick J., Aviel S., Argon Y. The endoplasmic reticulum stress protein GRP94, in addition to BiP, associates with unassembled immunoglobulin chains. J Biol Chem. 1992 Oct 25;267(30):21303–21306. [PubMed] [Google Scholar]
  35. Michel-Bechet M., Gotte G., Codaccioni J. L., Athouël-Haon A. M. Ultrastructure thyroïdienne et perturbations biochimiques de l'hormonogenèse. Acta Anat (Basel) 1969;73(3):389–409. [PubMed] [Google Scholar]
  36. Miura O., Sugahara Y., Aoki N. Intracellular transport-deficient mutants causing hereditary deficiencies of factors involved in coagulation and fibrinolysis. Thromb Haemost. 1993 Mar 1;69(3):296–297. [PubMed] [Google Scholar]
  37. Mori K., Ma W., Gething M. J., Sambrook J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell. 1993 Aug 27;74(4):743–756. doi: 10.1016/0092-8674(93)90521-q. [DOI] [PubMed] [Google Scholar]
  38. Ohyama Y., Hosoya T., Kameya T., Suzuki N., Nakamura S., Kazahari K., Shibayama K., Yokota Y., Matsuura N. Congenital euthyroid goitre with impaired thyroglobulin transport. Clin Endocrinol (Oxf) 1994 Jul;41(1):129–135. doi: 10.1111/j.1365-2265.1994.tb03794.x. [DOI] [PubMed] [Google Scholar]
  39. Pfeffer S. R., Rothman J. E. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu Rev Biochem. 1987;56:829–852. doi: 10.1146/annurev.bi.56.070187.004145. [DOI] [PubMed] [Google Scholar]
  40. Pind S., Riordan J. R., Williams D. B. Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1994 Apr 29;269(17):12784–12788. [PubMed] [Google Scholar]
  41. Qu D., Mazzarella R. A., Green M. Analysis of the structure and synthesis of GRP94, an abundant stress protein of the endoplasmic reticulum. DNA Cell Biol. 1994 Feb;13(2):117–124. doi: 10.1089/dna.1994.13.117. [DOI] [PubMed] [Google Scholar]
  42. Ricketts M. H., Simons M. J., Parma J., Mercken L., Dong Q., Vassart G. A nonsense mutation causes hereditary goitre in the Afrikander cattle and unmasks alternative splicing of thyroglobulin transcripts. Proc Natl Acad Sci U S A. 1987 May;84(10):3181–3184. doi: 10.1073/pnas.84.10.3181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rothman J. E. Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell. 1989 Nov 17;59(4):591–601. doi: 10.1016/0092-8674(89)90005-6. [DOI] [PubMed] [Google Scholar]
  44. Schmale H., Bahnsen U., Richter D. Structure and expression of the vasopressin precursor gene in central diabetes insipidus. Ann N Y Acad Sci. 1993 Jul 22;689:74–82. doi: 10.1111/j.1749-6632.1993.tb55538.x. [DOI] [PubMed] [Google Scholar]
  45. Sifers R. N., Finegold M. J., Woo S. L. Molecular biology and genetics of alpha 1-antitrypsin deficiency. Semin Liver Dis. 1992 Aug;12(3):301–310. doi: 10.1055/s-2008-1040399. [DOI] [PubMed] [Google Scholar]
  46. Simons J. F., Ferro-Novick S., Rose M. D., Helenius A. BiP/Kar2p serves as a molecular chaperone during carboxypeptidase Y folding in yeast. J Cell Biol. 1995 Jul;130(1):41–49. doi: 10.1083/jcb.130.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Targovnik H. M., Vono J., Billerbeck A. E., Cerrone G. E., Varela V., Mendive F., Wajchenberg B. L., Medeiros-Neto G. A 138-nucleotide deletion in the thyroglobulin ribonucleic acid messenger in a congenital goiter with defective thyroglobulin synthesis. J Clin Endocrinol Metab. 1995 Nov;80(11):3356–3360. doi: 10.1210/jcem.80.11.7593451. [DOI] [PubMed] [Google Scholar]
  48. Taylor B. A., Rowe L. The congenital goiter mutation is linked to the thyroglobulin gene in the mouse. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1986–1990. doi: 10.1073/pnas.84.7.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Vogel J. P., Misra L. M., Rose M. D. Loss of BiP/GRP78 function blocks translocation of secretory proteins in yeast. J Cell Biol. 1990 Jun;110(6):1885–1895. doi: 10.1083/jcb.110.6.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ward C. L., Omura S., Kopito R. R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell. 1995 Oct 6;83(1):121–127. doi: 10.1016/0092-8674(95)90240-6. [DOI] [PubMed] [Google Scholar]
  51. Weissman J. S., Kim P. S. Efficient catalysis of disulphide bond rearrangements by protein disulphide isomerase. Nature. 1993 Sep 9;365(6442):185–188. doi: 10.1038/365185a0. [DOI] [PubMed] [Google Scholar]
  52. Wiertz E. J., Jones T. R., Sun L., Bogyo M., Geuze H. J., Ploegh H. L. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell. 1996 Mar 8;84(5):769–779. doi: 10.1016/s0092-8674(00)81054-5. [DOI] [PubMed] [Google Scholar]
  53. Yoshida S., Takamatsu J., Kuma K., Murakami Y., Sakane S., Katayama S., Tarutani O., Ohsawa N. A variant of adenomatous goiter with characteristic histology and possible hereditary thyroglobulin abnormality. J Clin Endocrinol Metab. 1996 May;81(5):1961–1966. doi: 10.1210/jcem.81.5.8626865. [DOI] [PubMed] [Google Scholar]
  54. Zapun A., Creighton T. E., Rowling P. J., Freedman R. B. Folding in vitro of bovine pancreatic trypsin inhibitor in the presence of proteins of the endoplasmic reticulum. Proteins. 1992 Sep;14(1):10–15. doi: 10.1002/prot.340140104. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES