Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Dec 15;98(12):2887–2893. doi: 10.1172/JCI119117

Increased expression of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of noninsulin-dependent diabetes mellitus subjects.

M Federici 1, L Zucaro 1, O Porzio 1, R Massoud 1, P Borboni 1, D Lauro 1, G Sesti 1
PMCID: PMC507756  PMID: 8981937

Abstract

Insulin receptors (IR) and IGF-I receptors (IGF-IR) have been shown to form hybrid receptors in tissues coexpressing both molecules. To date there is no information about the distribution of hybrids in tissues of normal or diabetic subjects. We developed a microwell-based immunoassay to quantitate hybrids in small human tissues samples. Microwells were coated with MA-20 anti-IR antibody or alpha-IGF-IR-PA antibody directed against the IGF-IR alpha-subunit, and incubated with skeletal muscle extracts of patients with noninsulin-dependent diabetes mellitus (NIDDM) and normal controls. Immobilized receptors were incubated with 125I-insulin or 125I-IGF-I in the presence or absence of the two unlabeled ligands. Hybrids were quantified as the fraction of 125I-IGF-I binding immunoadsorbed with MA-20 and expressed as percentage of total IGF-IR (type I+hybrids) immobilized with alpha-IGF-IR-PA. The immunoassay was validated using Western blotting analysis. Relative abundance of hybrids detected in NIDDM patients was higher than in controls. The percentage of hybrids was negatively correlated with IR number and in vivo insulin sensitivity measured by an insulin tolerance test, whereas the percentage was positively correlated with insulinemia. Insulin binding affinity was lower in NIDDM patients than in controls, and was correlated with the percentage of hybrids. Maximal IGF-I binding was significantly higher in muscle from NIDDM patients compared to controls and was positively correlated with the percentage of hybrid receptors whereas IGF-I binding affinity did not differ between the two groups. These results raise the possibility that alterations in expression of hybrid receptors may contribute to decreased insulin sensitivity, and to increased sensitivity to IGF-I. Because IGF-I has been proposed as a hypoglycemic agent in NIDDM, these results are relevant to the development of new approaches to the treatment of insulin resistance of NIDDM.

Full Text

The Full Text of this article is available as a PDF (199.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen P. H., Lund S., Vestergaard H., Junker S., Kahn B. B., Pedersen O. Expression of the major insulin regulatable glucose transporter (GLUT4) in skeletal muscle of noninsulin-dependent diabetic patients and healthy subjects before and after insulin infusion. J Clin Endocrinol Metab. 1993 Jul;77(1):27–32. doi: 10.1210/jcem.77.1.8325952. [DOI] [PubMed] [Google Scholar]
  2. Arner P., Pollare T., Lithell H., Livingston J. N. Defective insulin receptor tyrosine kinase in human skeletal muscle in obesity and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1987 Jun;30(6):437–440. doi: 10.1007/BF00292549. [DOI] [PubMed] [Google Scholar]
  3. Benzi L., Pezzino V., Marchetti P., Gullo D., Cecchetti P., Masoni A., Vigneri R., Navalesi R. A14-[125I]monoiodoinsulin purified by different high-performance liquid chromatographic procedures and by polyacrylamide gel electrophoresis: preparation, immunochemical properties and receptor binding affinity. J Chromatogr. 1986 Jun 13;378(2):337–347. doi: 10.1016/s0378-4347(00)80730-6. [DOI] [PubMed] [Google Scholar]
  4. Bonora E., Moghetti P., Zancanaro C., Cigolini M., Querena M., Cacciatori V., Corgnati A., Muggeo M. Estimates of in vivo insulin action in man: comparison of insulin tolerance tests with euglycemic and hyperglycemic glucose clamp studies. J Clin Endocrinol Metab. 1989 Feb;68(2):374–378. doi: 10.1210/jcem-68-2-374. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Caro J. F., Sinha M. K., Raju S. M., Ittoop O., Pories W. J., Flickinger E. G., Meelheim D., Dohm G. L. Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J Clin Invest. 1987 May;79(5):1330–1337. doi: 10.1172/JCI112958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cheatham B., Kahn C. R. Insulin action and the insulin signaling network. Endocr Rev. 1995 Apr;16(2):117–142. doi: 10.1210/edrv-16-2-117. [DOI] [PubMed] [Google Scholar]
  8. DeFronzo R. A., Gunnarsson R., Björkman O., Olsson M., Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985 Jul;76(1):149–155. doi: 10.1172/JCI111938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DeFronzo R. A. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988 Jun;37(6):667–687. doi: 10.2337/diab.37.6.667. [DOI] [PubMed] [Google Scholar]
  10. Ebina Y., Ellis L., Jarnagin K., Edery M., Graf L., Clauser E., Ou J. H., Masiarz F., Kan Y. W., Goldfine I. D. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell. 1985 Apr;40(4):747–758. doi: 10.1016/0092-8674(85)90334-4. [DOI] [PubMed] [Google Scholar]
  11. Forsayeth J. R., Montemurro A., Maddux B. A., DePirro R., Goldfine I. D. Effect of monoclonal antibodies on human insulin receptor autophosphorylation, negative cooperativity, and down-regulation. J Biol Chem. 1987 Mar 25;262(9):4134–4140. [PubMed] [Google Scholar]
  12. Frattali A. L., Pessin J. E. Relationship between alpha subunit ligand occupancy and beta subunit autophosphorylation in insulin/insulin-like growth factor-1 hybrid receptors. J Biol Chem. 1993 Apr 5;268(10):7393–7400. [PubMed] [Google Scholar]
  13. Garvey W. T., Maianu L., Hancock J. A., Golichowski A. M., Baron A. Gene expression of GLUT4 in skeletal muscle from insulin-resistant patients with obesity, IGT, GDM, and NIDDM. Diabetes. 1992 Apr;41(4):465–475. doi: 10.2337/diab.41.4.465. [DOI] [PubMed] [Google Scholar]
  14. Hussain M. A., Schmitz O., Mengel A., Keller A., Christiansen J. S., Zapf J., Froesch E. R. Insulin-like growth factor I stimulates lipid oxidation, reduces protein oxidation, and enhances insulin sensitivity in humans. J Clin Invest. 1993 Nov;92(5):2249–2256. doi: 10.1172/JCI116828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. James D. E., Zorzano A., Böni-Schnetzler M., Nemenoff R. A., Powers A., Pilch P. F., Ruderman N. B. Intrinsic differences of insulin receptor kinase activity in red and white muscle. J Biol Chem. 1986 Nov 15;261(32):14939–14944. [PubMed] [Google Scholar]
  16. Kolaczynski J. W., Caro J. F. Insulin-like growth factor-1 therapy in diabetes: physiologic basis, clinical benefits, and risks. Ann Intern Med. 1994 Jan 1;120(1):47–55. doi: 10.7326/0003-4819-120-1-199401010-00009. [DOI] [PubMed] [Google Scholar]
  17. Langlois W. J., Sasaoka T., Yip C. C., Olefsky J. M. Functional characterization of hybrid receptors composed of a truncated insulin receptor and wild type insulin-like growth factor 1 or insulin receptors. Endocrinology. 1995 May;136(5):1978–1986. doi: 10.1210/endo.136.5.7720646. [DOI] [PubMed] [Google Scholar]
  18. Moses A. C., Young S. C., Morrow L. A., O'Brien M., Clemmons D. R. Recombinant human insulin-like growth factor I increases insulin sensitivity and improves glycemic control in type II diabetes. Diabetes. 1996 Jan;45(1):91–100. doi: 10.2337/diab.45.1.91. [DOI] [PubMed] [Google Scholar]
  19. Moxham C. P., Duronio V., Jacobs S. Insulin-like growth factor I receptor beta-subunit heterogeneity. Evidence for hybrid tetramers composed of insulin-like growth factor I and insulin receptor heterodimers. J Biol Chem. 1989 Aug 5;264(22):13238–13244. [PubMed] [Google Scholar]
  20. Obermaier-Kusser B., White M. F., Pongratz D. E., Su Z., Ermel B., Muhlbacher C., Haring H. U. A defective intramolecular autoactivation cascade may cause the reduced kinase activity of the skeletal muscle insulin receptor from patients with non-insulin-dependent diabetes mellitus. J Biol Chem. 1989 Jun 5;264(16):9497–9504. [PubMed] [Google Scholar]
  21. Rosenzweig S. A., Zetterström C., Benjamin A. Identification of retinal insulin receptors using site-specific antibodies to a carboxyl-terminal peptide of the human insulin receptor alpha-subunit. Up-regulation of neuronal insulin receptors in diabetes. J Biol Chem. 1990 Oct 15;265(29):18030–18034. [PubMed] [Google Scholar]
  22. Seely B. L., Reichart D. R., Takata Y., Yip C., Olefsky J. M. A functional assessment of insulin/insulin-like growth factor-I hybrid receptors. Endocrinology. 1995 Apr;136(4):1635–1641. doi: 10.1210/endo.136.4.7895674. [DOI] [PubMed] [Google Scholar]
  23. Sesti G., D'Alfonso R., Vargas Punti M. D., Frittitta L., Trischitta V., Liu Y. Y., Borboni P., Longhi R., Montemurro A., Lauro R. Peptide-based radioimmunoassay for the two isoforms of the human insulin receptor. Diabetologia. 1995 Apr;38(4):445–453. doi: 10.1007/BF00410282. [DOI] [PubMed] [Google Scholar]
  24. Soos M. A., Field C. E., Siddle K. Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochem J. 1993 Mar 1;290(Pt 2):419–426. doi: 10.1042/bj2900419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Soos M. A., Siddle K. Immunological relationships between receptors for insulin and insulin-like growth factor I. Evidence for structural heterogeneity of insulin-like growth factor I receptors involving hybrids with insulin receptors. Biochem J. 1989 Oct 15;263(2):553–563. doi: 10.1042/bj2630553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Soos M. A., Whittaker J., Lammers R., Ullrich A., Siddle K. Receptors for insulin and insulin-like growth factor-I can form hybrid dimers. Characterisation of hybrid receptors in transfected cells. Biochem J. 1990 Sep 1;270(2):383–390. doi: 10.1042/bj2700383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Treadway J. L., Morrison B. D., Goldfine I. D., Pessin J. E. Assembly of insulin/insulin-like growth factor-1 hybrid receptors in vitro. J Biol Chem. 1989 Dec 25;264(36):21450–21453. [PubMed] [Google Scholar]
  28. Ullrich A., Bell J. R., Chen E. Y., Herrera R., Petruzzelli L. M., Dull T. J., Gray A., Coussens L., Liao Y. C., Tsubokawa M. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. 1985 Feb 28-Mar 6Nature. 313(6005):756–761. doi: 10.1038/313756a0. [DOI] [PubMed] [Google Scholar]
  29. Ullrich A., Gray A., Tam A. W., Yang-Feng T., Tsubokawa M., Collins C., Henzel W., Le Bon T., Kathuria S., Chen E. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 1986 Oct;5(10):2503–2512. doi: 10.1002/j.1460-2075.1986.tb04528.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zenobi P. D., Jaeggi-Groisman S. E., Riesen W. F., Røder M. E., Froesch E. R. Insulin-like growth factor-I improves glucose and lipid metabolism in type 2 diabetes mellitus. J Clin Invest. 1992 Dec;90(6):2234–2241. doi: 10.1172/JCI116109. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES