Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Jan 1;88(1):194–198. doi: 10.1073/pnas.88.1.194

Nonhomologous chromatid exchange in hereditary and sporadic renal cell carcinomas.

G Kovacs 1, H F Kung 1
PMCID: PMC50776  PMID: 1986366

Abstract

For the development of renal cell carcinomas, it has been suggested that a germ-line or somatic mutation occurs on one of the homologous chromosomes 3p, and subsequently the other 3p segment is lost. We have examined the karyotype and/or the allelic combination on chromosomes 3 and 5 by restriction fragment length polymorphism analysis in normal kidney and tumor samples from 28 renal cell carcinomas that developed in two patients with von Hippel-Lindau disease; we then compared the results to those of sporadic tumors. An unbalanced translocation between chromosome 3p and 5q or other chromosomes was found to be the most common aberration. We developed a model of nonhomologous chromatid exchange involving breakpoint clusters at chromosomes 3p13, 3p11.2, 5q22, and 8q11.2. Subsequent chromatid segregation may result in net loss of the 3p segment either (i) in one step or (ii) after a nondisjunctional loss of the derivative chromosome carrying the 3p segment. This general mechanism could also be implicated to explain genetic changes occurring in other types of solid tumors.

Full text

PDF
194

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen A. J., Li F. P., Berg S., Marchetto D. J., Tsai S., Jacobs S. C., Brown R. S. Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med. 1979 Sep 13;301(11):592–595. doi: 10.1056/NEJM197909133011107. [DOI] [PubMed] [Google Scholar]
  2. Davis M. M. Molecular genetics of the T cell-receptor beta chain. Annu Rev Immunol. 1985;3:537–560. doi: 10.1146/annurev.iy.03.040185.002541. [DOI] [PubMed] [Google Scholar]
  3. Decker H. J., Neumann H. P., Walter T. A., Sandberg A. A. 3p involvement in a renal cell carcinoma in von Hippel-Lindau syndrome. Region of tumor breakpoint clustering on 3p? Cancer Genet Cytogenet. 1988 Jul 1;33(1):59–65. doi: 10.1016/0165-4608(88)90050-7. [DOI] [PubMed] [Google Scholar]
  4. Friend S. H., Bernards R., Rogelj S., Weinberg R. A., Rapaport J. M., Albert D. M., Dryja T. P. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature. 1986 Oct 16;323(6089):643–646. doi: 10.1038/323643a0. [DOI] [PubMed] [Google Scholar]
  5. Griffin C. A., McKeon C., Israel M. A., Gegonne A., Ghysdael J., Stehelin D., Douglass E. C., Green A. E., Emanuel B. S. Comparison of constitutional and tumor-associated 11;22 translocations: nonidentical breakpoints on chromosomes 11 and 22. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6122–6126. doi: 10.1073/pnas.83.16.6122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Groden J., Nakamura Y., German J. Molecular evidence that homologous recombination occurs in proliferating human somatic cells. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4315–4319. doi: 10.1073/pnas.87.11.4315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huang H. J., Yee J. K., Shew J. Y., Chen P. L., Bookstein R., Friedmann T., Lee E. Y., Lee W. H. Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science. 1988 Dec 16;242(4885):1563–1566. doi: 10.1126/science.3201247. [DOI] [PubMed] [Google Scholar]
  8. Jordan D. K., Patil S. R., Divelbiss J. E., Vemuganti S., Headley C., Waziri M. H., Gurll N. J. Cytogenetic abnormalities in tumors of patients with von Hippel-Lindau disease. Cancer Genet Cytogenet. 1989 Oct 15;42(2):227–241. doi: 10.1016/0165-4608(89)90091-5. [DOI] [PubMed] [Google Scholar]
  9. King C. R., Schimke R. N., Arthur T., Davoren B., Collins D. Proximal 3p deletion in renal cell carcinoma cells from a patient with von Hippel-Lindau disease. Cancer Genet Cytogenet. 1987 Aug;27(2):345–348. doi: 10.1016/0165-4608(87)90017-3. [DOI] [PubMed] [Google Scholar]
  10. Klein G., Klein E. Conditioned tumorigenicity of activated oncogenes. Cancer Res. 1986 Jul;46(7):3211–3224. [PubMed] [Google Scholar]
  11. Knudson A. G., Jr Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971 Apr;68(4):820–823. doi: 10.1073/pnas.68.4.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kovacs G., Brusa P., De Riese W. Tissue-specific expression of a constitutional 3;6 translocation: development of multiple bilateral renal-cell carcinomas. Int J Cancer. 1989 Mar 15;43(3):422–427. doi: 10.1002/ijc.2910430313. [DOI] [PubMed] [Google Scholar]
  13. Kovacs G., Frisch S. Clonal chromosome abnormalities in tumor cells from patients with sporadic renal cell carcinomas. Cancer Res. 1989 Feb 1;49(3):651–659. [PubMed] [Google Scholar]
  14. Lee W. H., Bookstein R., Hong F., Young L. J., Shew J. Y., Lee E. Y. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science. 1987 Mar 13;235(4794):1394–1399. doi: 10.1126/science.3823889. [DOI] [PubMed] [Google Scholar]
  15. Mark J., Dahlenfors R. Cytogenetical observations in 100 human benign pleomorphic adenomas: specificity of the chromosomal aberrations and their relationship to sites of localized oncogenes. Anticancer Res. 1986 Mar-Apr;6(2):299–308. [PubMed] [Google Scholar]
  16. Sager R. Tumor suppressor genes: the puzzle and the promise. Science. 1989 Dec 15;246(4936):1406–1412. doi: 10.1126/science.2574499. [DOI] [PubMed] [Google Scholar]
  17. Seizinger B. R., Rouleau G. A., Ozelius L. J., Lane A. H., Farmer G. E., Lamiell J. M., Haines J., Yuen J. W., Collins D., Majoor-Krakauer D. Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature. 1988 Mar 17;332(6161):268–269. doi: 10.1038/332268a0. [DOI] [PubMed] [Google Scholar]
  18. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983 Apr 14;302(5909):575–581. doi: 10.1038/302575a0. [DOI] [PubMed] [Google Scholar]
  19. Tory K., Brauch H., Linehan M., Barba D., Oldfield E., Filling-Katz M., Seizinger B., Nakamura Y., White R., Marshall F. F. Specific genetic change in tumors associated with von Hippel-Lindau disease. J Natl Cancer Inst. 1989 Jul 19;81(14):1097–1101. doi: 10.1093/jnci/81.14.1097. [DOI] [PubMed] [Google Scholar]
  20. Turc-Carel C., Philip I., Berger M. P., Philip T., Lenoir G. M. Chromosome study of Ewing's sarcoma (ES) cell lines. Consistency of a reciprocal translocation t(11;22)(q24;q12). Cancer Genet Cytogenet. 1984 May;12(1):1–19. doi: 10.1016/0165-4608(84)90002-5. [DOI] [PubMed] [Google Scholar]
  21. Tycko B., Sklar J. Chromosomal translocations in lymphoid neoplasia: a reappraisal of the recombinase model. Cancer Cells. 1990 Jan;2(1):1–8. [PubMed] [Google Scholar]
  22. Wevrick R., Willard H. F. Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9394–9398. doi: 10.1073/pnas.86.23.9394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Whang-Peng J., Triche T. J., Knutsen T., Miser J., Kao-Shan S., Tsai S., Israel M. A. Cytogenetic characterization of selected small round cell tumors of childhood. Cancer Genet Cytogenet. 1986 Apr 1;21(3):185–208. doi: 10.1016/0165-4608(86)90001-4. [DOI] [PubMed] [Google Scholar]
  24. Yoshida M. A., Ohyashiki K., Ochi H., Gibas Z., Pontes J. E., Prout G. R., Jr, Huben R., Sandberg A. A. Cytogenetic studies of tumor tissue from patients with nonfamilial renal cell carcinoma. Cancer Res. 1986 Apr;46(4 Pt 2):2139–2147. [PubMed] [Google Scholar]
  25. Zackai E. H., Emanuel B. S. Site-specific reciprocal translocation, t(11;22) (q23;q11), in several unrelated families with 3:1 meiotic disjunction. Am J Med Genet. 1980;7(4):507–521. doi: 10.1002/ajmg.1320070412. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES