Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jan 1;99(1):41–46. doi: 10.1172/JCI119131

Tetrahydrobiopterin restores endothelial function in hypercholesterolemia.

E Stroes 1, J Kastelein 1, F Cosentino 1, W Erkelens 1, R Wever 1, H Koomans 1, T Lüscher 1, T Rabelink 1
PMCID: PMC507765  PMID: 9011574

Abstract

In hypercholesterolemia, impaired nitric oxide activity has been associated with increased nitric oxide degradation by oxygen radicals. Deficiency of tetrahydrobiopterin, an essential cofactor of nitric oxide synthase, causes both impaired nitric oxide activity and increased oxygen radical formation. In this study we tested whether tetrahydrobiopterin deficiency contributes to the decreased nitric oxide activity observed in hypercholesterolemic patients. Therefore, L-mono-methyl-arginine to inhibit basal nitric oxide activity, serotonin to stimulate nitric oxide activity, and nitroprusside as endothelium-independent vasodilator were infused in the brachial artery of 13 patients with familial hypercholesterolemia and 13 matched controls. The infusions were repeated during coinfusion of L-arginine (200 microg/kg/min), tetrahydrobiopterin (500 microg/min), or the combination of both compounds. Forearm vasomotion was assessed using forearm venous occlusion plethysmography and expressed as ratio of blood flow between measurement and control arm (M/C ratio). Tetrahydrobiopterin infusion alone did not alter M/C ratio. Both the attenuated L-mono-methyl-arginine-induced vasoconstriction as well as the impaired serotonin-induced vasodilation were restored in patients during tetrahydrobiopterin infusion. Tetrahydrobiopterin had no effect in controls. In conclusion, this study demonstrates restoration of endothelial dysfunction by tetrahydrobiopterin suppletion in hypercholesterolemic patients.

Full Text

The Full Text of this article is available as a PDF (340.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anggård E. Nitric oxide: mediator, murderer, and medicine. Lancet. 1994 May 14;343(8907):1199–1206. doi: 10.1016/s0140-6736(94)92405-8. [DOI] [PubMed] [Google Scholar]
  2. Arnal J. F., Münzel T., Venema R. C., James N. L., Bai C. L., Mitch W. E., Harrison D. G. Interactions between L-arginine and L-glutamine change endothelial NO production. An effect independent of NO synthase substrate availability. J Clin Invest. 1995 Jun;95(6):2565–2572. doi: 10.1172/JCI117957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benjamin N., Calver A., Collier J., Robinson B., Vallance P., Webb D. Measuring forearm blood flow and interpreting the responses to drugs and mediators. Hypertension. 1995 May;25(5):918–923. doi: 10.1161/01.hyp.25.5.918. [DOI] [PubMed] [Google Scholar]
  4. Brand M. P., Heales S. J., Land J. M., Clark J. B. Tetrahydrobiopterin deficiency and brain nitric oxide synthase in the hph1 mouse. J Inherit Metab Dis. 1995;18(1):33–39. doi: 10.1007/BF00711370. [DOI] [PubMed] [Google Scholar]
  5. Bruning T. A., van Zwieten P. A., Blauw G. J., Chang P. C. No functional involvement of 5-hydroxytryptamine1A receptors in nitric oxide-dependent dilatation caused by serotonin in the human forearm vascular bed. J Cardiovasc Pharmacol. 1994 Sep;24(3):454–461. doi: 10.1097/00005344-199409000-00014. [DOI] [PubMed] [Google Scholar]
  6. Chang P. C., Verlinde R., Bruning T., van Brummelen P. A microcomputer-based, R-wave triggered system for hemodynamic measurements in the forearm. Comput Biol Med. 1988;18(3):157–163. doi: 10.1016/0010-4825(88)90042-x. [DOI] [PubMed] [Google Scholar]
  7. Chen P. F., Tsai A. L., Wu K. K. Cysteine 99 of endothelial nitric oxide synthase (NOS-III) is critical for tetrahydrobiopterin-dependent NOS-III stability and activity. Biochem Biophys Res Commun. 1995 Oct 24;215(3):1119–1129. doi: 10.1006/bbrc.1995.2579. [DOI] [PubMed] [Google Scholar]
  8. Cho H. J., Martin E., Xie Q. W., Sassa S., Nathan C. Inducible nitric oxide synthase: identification of amino acid residues essential for dimerization and binding of tetrahydrobiopterin. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11514–11518. doi: 10.1073/pnas.92.25.11514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chowienczyk P. J., Cockcroft J. R., Ritter J. M. Inhibition of acetylcholinesterase selectively potentiates NG-monomethyl-L-arginine-resistant actions of acetylcholine in human forearm vasculature. Clin Sci (Lond) 1995 Jan;88(1):111–117. doi: 10.1042/cs0880111. [DOI] [PubMed] [Google Scholar]
  10. Cosentino F., Katusić Z. S. Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries. Circulation. 1995 Jan 1;91(1):139–144. doi: 10.1161/01.cir.91.1.139. [DOI] [PubMed] [Google Scholar]
  11. Creager M. A., Cooke J. P., Mendelsohn M. E., Gallagher S. J., Coleman S. M., Loscalzo J., Dzau V. J. Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J Clin Invest. 1990 Jul;86(1):228–234. doi: 10.1172/JCI114688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Creager M. A., Gallagher S. J., Girerd X. J., Coleman S. M., Dzau V. J., Cooke J. P. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest. 1992 Oct;90(4):1248–1253. doi: 10.1172/JCI115987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Davis M. D., Kaufman S. Products of the tyrosine-dependent oxidation of tetrahydrobiopterin by rat liver phenylalanine hydroxylase. Arch Biochem Biophys. 1993 Jul;304(1):9–16. doi: 10.1006/abbi.1993.1315. [DOI] [PubMed] [Google Scholar]
  14. Drexler H., Zeiher A. M., Meinzer K., Just H. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet. 1991 Dec 21;338(8782-8783):1546–1550. doi: 10.1016/0140-6736(91)92372-9. [DOI] [PubMed] [Google Scholar]
  15. Förstermann U., Closs E. I., Pollock J. S., Nakane M., Schwarz P., Gath I., Kleinert H. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension. 1994 Jun;23(6 Pt 2):1121–1131. doi: 10.1161/01.hyp.23.6.1121. [DOI] [PubMed] [Google Scholar]
  16. Gimbrone M. A., Jr Vascular endothelium: an integrator of pathophysiologic stimuli in atherosclerosis. Am J Cardiol. 1995 Feb 23;75(6):67B–70B. doi: 10.1016/0002-9149(95)80016-l. [DOI] [PubMed] [Google Scholar]
  17. Gross S. S., Levi R. Tetrahydrobiopterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. J Biol Chem. 1992 Dec 25;267(36):25722–25729. [PubMed] [Google Scholar]
  18. Harrison D. G., Ohara Y. Physiologic consequences of increased vascular oxidant stresses in hypercholesterolemia and atherosclerosis: implications for impaired vasomotion. Am J Cardiol. 1995 Feb 23;75(6):75B–81B. doi: 10.1016/0002-9149(95)80018-n. [DOI] [PubMed] [Google Scholar]
  19. Hecker M., Sessa W. C., Harris H. J., Anggård E. E., Vane J. R. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8612–8616. doi: 10.1073/pnas.87.21.8612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Heinzel B., John M., Klatt P., Böhme E., Mayer B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J. 1992 Feb 1;281(Pt 3):627–630. doi: 10.1042/bj2810627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Heitzer T., Ylä-Herttuala S., Luoma J., Kurz S., Münzel T., Just H., Olschewski M., Drexler H. Cigarette smoking potentiates endothelial dysfunction of forearm resistance vessels in patients with hypercholesterolemia. Role of oxidized LDL. Circulation. 1996 Apr 1;93(7):1346–1353. doi: 10.1161/01.cir.93.7.1346. [DOI] [PubMed] [Google Scholar]
  22. Huie R. E., Padmaja S. The reaction of no with superoxide. Free Radic Res Commun. 1993;18(4):195–199. doi: 10.3109/10715769309145868. [DOI] [PubMed] [Google Scholar]
  23. Johnstone M. T., Creager S. J., Scales K. M., Cusco J. A., Lee B. K., Creager M. A. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation. 1993 Dec;88(6):2510–2516. doi: 10.1161/01.cir.88.6.2510. [DOI] [PubMed] [Google Scholar]
  24. Klatt P., Schmidt K., Lehner D., Glatter O., Bächinger H. P., Mayer B. Structural analysis of porcine brain nitric oxide synthase reveals a role for tetrahydrobiopterin and L-arginine in the formation of an SDS-resistant dimer. EMBO J. 1995 Aug 1;14(15):3687–3695. doi: 10.1002/j.1460-2075.1995.tb00038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kume N., Cybulsky M. I., Gimbrone M. A., Jr Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest. 1992 Sep;90(3):1138–1144. doi: 10.1172/JCI115932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lüscher T. F., Noll G. The pathogenesis of cardiovascular disease: role of the endothelium as a target and mediator. Atherosclerosis. 1995 Dec;118 (Suppl):S81–S90. [PubMed] [Google Scholar]
  27. Mayer B., John M., Heinzel B., Werner E. R., Wachter H., Schultz G., Böhme E. Brain nitric oxide synthase is a biopterin- and flavin-containing multi-functional oxido-reductase. FEBS Lett. 1991 Aug 19;288(1-2):187–191. doi: 10.1016/0014-5793(91)81031-3. [DOI] [PubMed] [Google Scholar]
  28. Mayer B., Werner E. R. In search of a function for tetrahydrobiopterin in the biosynthesis of nitric oxide. Naunyn Schmiedebergs Arch Pharmacol. 1995 May;351(5):453–463. doi: 10.1007/BF00171035. [DOI] [PubMed] [Google Scholar]
  29. Minor R. L., Jr, Myers P. R., Guerra R., Jr, Bates J. N., Harrison D. G. Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J Clin Invest. 1990 Dec;86(6):2109–2116. doi: 10.1172/JCI114949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nathan C., Xie Q. W. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994 Sep 23;78(6):915–918. doi: 10.1016/0092-8674(94)90266-6. [DOI] [PubMed] [Google Scholar]
  31. Nishimura J. S., Martasek P., McMillan K., Salerno J., Liu Q., Gross S. S., Masters B. S. Modular structure of neuronal nitric oxide synthase: localization of the arginine binding site and modulation by pterin. Biochem Biophys Res Commun. 1995 May 16;210(2):288–294. doi: 10.1006/bbrc.1995.1659. [DOI] [PubMed] [Google Scholar]
  32. Ohara Y., Peterson T. E., Harrison D. G. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest. 1993 Jun;91(6):2546–2551. doi: 10.1172/JCI116491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Panza J. A., García C. E., Kilcoyne C. M., Quyyumi A. A., Cannon R. O., 3rd Impaired endothelium-dependent vasodilation in patients with essential hypertension. Evidence that nitric oxide abnormality is not localized to a single signal transduction pathway. Circulation. 1995 Mar 15;91(6):1732–1738. doi: 10.1161/01.cir.91.6.1732. [DOI] [PubMed] [Google Scholar]
  34. Pritchard K. A., Jr, Groszek L., Smalley D. M., Sessa W. C., Wu M., Villalon P., Wolin M. S., Stemerman M. B. Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ Res. 1995 Sep;77(3):510–518. doi: 10.1161/01.res.77.3.510. [DOI] [PubMed] [Google Scholar]
  35. Quyyumi A. A., Dakak N., Andrews N. P., Husain S., Arora S., Gilligan D. M., Panza J. A., Cannon R. O., 3rd Nitric oxide activity in the human coronary circulation. Impact of risk factors for coronary atherosclerosis. J Clin Invest. 1995 Apr;95(4):1747–1755. doi: 10.1172/JCI117852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Reddy K. G., Nair R. N., Sheehan H. M., Hodgson J. M. Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis. J Am Coll Cardiol. 1994 Mar 15;23(4):833–843. doi: 10.1016/0735-1097(94)90627-0. [DOI] [PubMed] [Google Scholar]
  37. Rosenkranz-Weiss P., Sessa W. C., Milstien S., Kaufman S., Watson C. A., Pober J. S. Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity. J Clin Invest. 1994 May;93(5):2236–2243. doi: 10.1172/JCI117221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schaffner A., Blau N., Schneemann M., Steurer J., Edgell C. J., Schoedon G. Tetrahydrobiopterin as another EDRF in man. Biochem Biophys Res Commun. 1994 Nov 30;205(1):516–523. doi: 10.1006/bbrc.1994.2695. [DOI] [PubMed] [Google Scholar]
  39. Schmidt K., Werner E. R., Mayer B., Wachter H., Kukovetz W. R. Tetrahydrobiopterin-dependent formation of endothelium-derived relaxing factor (nitric oxide) in aortic endothelial cells. Biochem J. 1992 Jan 15;281(Pt 2):297–300. doi: 10.1042/bj2810297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stroes E. S., Joles J. A., Chang P. C., Koomans H. A., Rabelink T. J. Impaired endothelial function in patients with nephrotic range proteinuria. Kidney Int. 1995 Aug;48(2):544–550. doi: 10.1038/ki.1995.325. [DOI] [PubMed] [Google Scholar]
  41. Stroes E. S., Koomans H. A., de Bruin T. W., Rabelink T. J. Vascular function in the forearm of hypercholesterolaemic patients off and on lipid-lowering medication. Lancet. 1995 Aug 19;346(8973):467–471. doi: 10.1016/s0140-6736(95)91322-x. [DOI] [PubMed] [Google Scholar]
  42. Tayeh M. A., Marletta M. A. Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J Biol Chem. 1989 Nov 25;264(33):19654–19658. [PubMed] [Google Scholar]
  43. Ting H. H., Timimi F. K., Boles K. S., Creager S. J., Ganz P., Creager M. A. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1996 Jan 1;97(1):22–28. doi: 10.1172/JCI118394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tsutsui M., Milstien S., Katusic Z. S. Effect of tetrahydrobiopterin on endothelial function in canine middle cerebral arteries. Circ Res. 1996 Aug;79(2):336–342. doi: 10.1161/01.res.79.2.336. [DOI] [PubMed] [Google Scholar]
  45. Van Amsterdam J. G., Wemer J. Tetrahydrobiopterin induces vasodilation via enhancement of cGMP level. Eur J Pharmacol. 1992 May 14;215(2-3):349–350. doi: 10.1016/0014-2999(92)90056-a. [DOI] [PubMed] [Google Scholar]
  46. Witteveen C. F., Giovanelli J., Kaufman S. Reduction of quinonoid dihydrobiopterin to tetrahydrobiopterin by nitric oxide synthase. J Biol Chem. 1996 Feb 23;271(8):4143–4147. doi: 10.1074/jbc.271.8.4143. [DOI] [PubMed] [Google Scholar]
  47. Zeiher A. M., Drexler H., Wollschläger H., Just H. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation. 1991 Feb;83(2):391–401. doi: 10.1161/01.cir.83.2.391. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES