Abstract
Sepsis and its complications, hypotension, shock, and multiorgan failure continue to represent a significant cause of mortality among hospitalized patients, affecting approximately 200,000 patients per year in the US and 100,000 in Europe (Dal Nogare, A.R. 1991. Am. J. Med. Sci. 302:50-65.). Incidence rates appear to be increasing, probably due to an increase in the population with risk factors such as diabetes or invasive procedures. Activation of cytokines by endotoxins and subsequent formation of nitric oxide is of central pathogeneic importance in sepsis. In this study we show that polymerized bovine hemoglobin (Biopure 2) restores both cardiovascular and renal functions in an endotoxin-induced shock model in rats. These effects are compared to those of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine, and hydroxyethyl starch, the latter currently in clinical use for intravenous volume replacement. Our results clearly indicate that polymerized hemoglobin but not nitric oxide synthase inhibition or volume replacement normalize cardiovascular and kidney function in acute septic shock. This new therapeutic approach is readily applicable to controlled clinical trials because polymerized hemoglobin has been tested in humans and is therefore available for such studies.
Full Text
The Full Text of this article is available as a PDF (231.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beasley D., Eldridge M. Interleukin-1 beta and tumor necrosis factor-alpha synergistically induce NO synthase in rat vascular smooth muscle cells. Am J Physiol. 1994 Apr;266(4 Pt 2):R1197–R1203. doi: 10.1152/ajpregu.1994.266.4.R1197. [DOI] [PubMed] [Google Scholar]
- Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bone R. C. Sepsis and its complications: the clinical problem. Crit Care Med. 1994 Jul;22(7):S8–11. [PubMed] [Google Scholar]
- Brady A. J., Poole-Wilson P. A. Circulatory failure in septic shock. Nitric oxide: too much of a good thing? Br Heart J. 1993 Aug;70(2):103–105. doi: 10.1136/hrt.70.2.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bunn H. F., Esham W. T., Bull R. W. The renal handling of hemoglobin. I. Glomerular filtration. J Exp Med. 1969 May 1;129(5):909–923. doi: 10.1084/jem.129.5.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cunha F. Q., Assreuy J., Moss D. W., Rees D., Leal L. M., Moncada S., Carrier M., O'Donnell C. A., Liew F. Y. Differential induction of nitric oxide synthase in various organs of the mouse during endotoxaemia: role of TNF-alpha and IL-1-beta. Immunology. 1994 Feb;81(2):211–215. [PMC free article] [PubMed] [Google Scholar]
- Dal Nogare A. R. Septic shock. Am J Med Sci. 1991 Jul;302(1):50–65. [PubMed] [Google Scholar]
- Dunlap E., Farrell L., Nigro C., Estep T., Marchand G., Burhop K. Resuscitation with Diaspirin Crosslinked Hemoglobin in a pig model of hemorrhagic shock. Artif Cells Blood Substit Immobil Biotechnol. 1995;23(1):39–61. doi: 10.3109/10731199509117667. [DOI] [PubMed] [Google Scholar]
- Evans T., Carpenter A., Kinderman H., Cohen J. Evidence of increased nitric oxide production in patients with the sepsis syndrome. Circ Shock. 1993 Oct;41(2):77–81. [PubMed] [Google Scholar]
- Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
- Förstermann U., Closs E. I., Pollock J. S., Nakane M., Schwarz P., Gath I., Kleinert H. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension. 1994 Jun;23(6 Pt 2):1121–1131. doi: 10.1161/01.hyp.23.6.1121. [DOI] [PubMed] [Google Scholar]
- Griffiths E., Cortes A., Gilbert N., Stevenson P., MacDonald S., Pepper D. Haemoglobin-based blood substitutes and sepsis. Lancet. 1995 Jan 21;345(8943):158–160. doi: 10.1016/s0140-6736(95)90168-x. [DOI] [PubMed] [Google Scholar]
- Henry Y., Lepoivre M., Drapier J. C., Ducrocq C., Boucher J. L., Guissani A. EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J. 1993 Sep;7(12):1124–1134. doi: 10.1096/fasebj.7.12.8397130. [DOI] [PubMed] [Google Scholar]
- Kaca W., Roth R. I., Levin J. Hemoglobin, a newly recognized lipopolysaccharide (LPS)-binding protein that enhances LPS biological activity. J Biol Chem. 1994 Oct 7;269(40):25078–25084. [PubMed] [Google Scholar]
- Knowles R. G., Moncada S. Nitric oxide as a signal in blood vessels. Trends Biochem Sci. 1992 Oct;17(10):399–402. doi: 10.1016/0968-0004(92)90008-w. [DOI] [PubMed] [Google Scholar]
- Knowles R. G., Palacios M., Palmer R. M., Moncada S. Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5159–5162. doi: 10.1073/pnas.86.13.5159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langermans J. A., Bleeker W. K. Haemoglobin-based blood substitutes and infection. Lancet. 1995 Apr 1;345(8953):863–864. [PubMed] [Google Scholar]
- Lorente J. A., Landín L., Renes E., De Pablo R., Jorge P., Ródena E., Liste D. Role of nitric oxide in the hemodynamic changes of sepsis. Crit Care Med. 1993 May;21(5):759–767. doi: 10.1097/00003246-199305000-00021. [DOI] [PubMed] [Google Scholar]
- Martin W., Villani G. M., Jothianandan D., Furchgott R. F. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther. 1985 Mar;232(3):708–716. [PubMed] [Google Scholar]
- Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
- Mundel P., Bachmann S., Bader M., Fischer A., Kummer W., Mayer B., Kriz W. Expression of nitric oxide synthase in kidney macula densa cells. Kidney Int. 1992 Oct;42(4):1017–1019. doi: 10.1038/ki.1992.382. [DOI] [PubMed] [Google Scholar]
- Mülsch A., Busse R. NG-nitro-L-arginine (N5-[imino(nitroamino)methyl]-L-ornithine) impairs endothelium-dependent dilations by inhibiting cytosolic nitric oxide synthesis from L-arginine. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jan-Feb;341(1-2):143–147. doi: 10.1007/BF00195071. [DOI] [PubMed] [Google Scholar]
- Ochoa J. B., Curti B., Peitzman A. B., Simmons R. L., Billiar T. R., Hoffman R., Rault R., Longo D. L., Urba W. J., Ochoa A. C. Increased circulating nitrogen oxides after human tumor immunotherapy: correlation with toxic hemodynamic changes. J Natl Cancer Inst. 1992 Jun 3;84(11):864–867. doi: 10.1093/jnci/84.11.864. [DOI] [PubMed] [Google Scholar]
- Ochoa J. B., Udekwu A. O., Billiar T. R., Curran R. D., Cerra F. B., Simmons R. L., Peitzman A. B. Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg. 1991 Nov;214(5):621–626. doi: 10.1097/00000658-199111000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parrillo J. E. Pathogenetic mechanisms of septic shock. N Engl J Med. 1993 May 20;328(20):1471–1477. doi: 10.1056/NEJM199305203282008. [DOI] [PubMed] [Google Scholar]
- Petros A., Lamb G., Leone A., Moncada S., Bennett D., Vallance P. Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res. 1994 Jan;28(1):34–39. doi: 10.1093/cvr/28.1.34. [DOI] [PubMed] [Google Scholar]
- Redl H., Schlag G., Kneidinger R., Ohlinger W., Davies J. Response of the endothelium to trauma and sepsis. Adherence, cytokine effects and procoagulatory response. Arzneimittelforschung. 1994 Mar;44(3A):443–446. [PubMed] [Google Scholar]
- Rosenberg R. B., Broner C. W., O'Dorisio M. S. Modulation of cyclic guanosine monophosphate production during Escherichia coli septic shock. Biochem Med Metab Biol. 1994 Apr;51(2):149–155. doi: 10.1006/bmmb.1994.1019. [DOI] [PubMed] [Google Scholar]
- Shultz P. J., Raij L. Endogenously synthesized nitric oxide prevents endotoxin-induced glomerular thrombosis. J Clin Invest. 1992 Nov;90(5):1718–1725. doi: 10.1172/JCI116045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szabó C., Mitchell J. A., Thiemermann C., Vane J. R. Nitric oxide-mediated hyporeactivity to noradrenaline precedes the induction of nitric oxide synthase in endotoxin shock. Br J Pharmacol. 1993 Mar;108(3):786–792. doi: 10.1111/j.1476-5381.1993.tb12879.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thiemermann C. The role of the L-arginine: nitric oxide pathway in circulatory shock. Adv Pharmacol. 1994;28:45–79. doi: 10.1016/s1054-3589(08)60493-7. [DOI] [PubMed] [Google Scholar]
- Thiemermann C., Vane J. Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. Eur J Pharmacol. 1990 Jul 17;182(3):591–595. doi: 10.1016/0014-2999(90)90062-b. [DOI] [PubMed] [Google Scholar]
- Thompson A., McGarry A. E., Valeri C. R., Lieberthal W. Stroma-free hemoglobin increases blood pressure and GFR in the hypotensive rat: role of nitric oxide. J Appl Physiol (1985) 1994 Nov;77(5):2348–2354. doi: 10.1152/jappl.1994.77.5.2348. [DOI] [PubMed] [Google Scholar]
- Walder C. E., Thiemermann C., Vane J. R. The involvement of endothelium-derived relaxing factor in the regulation of renal cortical blood flow in the rat. Br J Pharmacol. 1991 Apr;102(4):967–973. doi: 10.1111/j.1476-5381.1991.tb12285.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wei X. Q., Charles I. G., Smith A., Ure J., Feng G. J., Huang F. P., Xu D., Muller W., Moncada S., Liew F. Y. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature. 1995 Jun 1;375(6530):408–411. doi: 10.1038/375408a0. [DOI] [PubMed] [Google Scholar]
- White C. T., Murray A. J., Smith D. J., Greene J. R., Bolin R. B. Synergistic toxicity of endotoxin and hemoglobin. J Lab Clin Med. 1986 Aug;108(2):132–137. [PubMed] [Google Scholar]
- Wilcox C. S., Welch W. J., Murad F., Gross S. S., Taylor G., Levi R., Schmidt H. H. Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11993–11997. doi: 10.1073/pnas.89.24.11993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zager R. A. Escherichia coli endotoxin injections potentiate experimental ischemic renal injury. Am J Physiol. 1986 Dec;251(6 Pt 2):F988–F994. doi: 10.1152/ajprenal.1986.251.6.F988. [DOI] [PubMed] [Google Scholar]
- Zager R. A., Gamelin L. M. Pathogenetic mechanisms in experimental hemoglobinuric acute renal failure. Am J Physiol. 1989 Mar;256(3 Pt 2):F446–F455. doi: 10.1152/ajprenal.1989.256.3.F446. [DOI] [PubMed] [Google Scholar]
