Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jan 1;99(1):55–61. doi: 10.1172/JCI119133

Hypoxia alters the subcellular distribution of protein kinase C isoforms in neonatal rat ventricular myocytes.

M Goldberg 1, H L Zhang 1, S F Steinberg 1
PMCID: PMC507767  PMID: 9011576

Abstract

Cardiac myocytes coexpress multiple protein kinase C (PKC) isoforms which likely play distinct roles in signaling pathways leading to changes in contractility, hypertrophy, and ischemic preconditioning. Although PKC has been reported to be activated during myocardial ischemia, the effect of ischemia/hypoxia on individual PKC isoforms has not been determined. This study examines the effect of hypoxia on the subcellular distribution of individual PKC isoforms in cultured neonatal rat ventricular myocytes. Hypoxia induces the redistribution of PKC alpha and PKC epsilon from the soluble to the particulate compartment. This effect (which is presumed to represent activation of PKC alpha and PKC epsilon) is detectable by 1 h, sustained for up to 24 h, and reversible within 1 h of reoxygenation. Inhibition of phospholipase C with tricyclodecan-9-yl-xanthogenate (D609) prevents the hypoxia-induced redistribution of PKC alpha and PKC epsilon, whereas chelation of intracellular calcium with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) blocks the redistribution of PKC alpha, but not PKC epsilon; D609 and BAPTA do not influence the partitioning of PKC alpha and PKC epsilon in normoxic myocytes. Hypoxia, in contrast, decreases the membrane association of PKC delta via a mechanism that is distinct from the hypoxia-induced translocation/activation of PKC alpha/PKC epsilon, since the response is slower in onset, slowly reversible upon reoxygenation, and not blocked by D609 or BAPTA. The hypoxia-induced shift of PKC delta to the soluble compartment does not prevent subsequent 4-beta phorbol 12-myristate-13-acetate-dependent translocation/activation of PKC delta. Hypoxia does not alter the abundance of any PKC isoform nor does it alter the subcellular distribution of PKC lambda. The selective hypoxia-induced activation of PKC isoforms through a pathway involving phospholipase C (PKC alpha/PKC epsilon) and intracellular calcium (PKC alpha) may critically influence cardiac myocyte contractility, gene expression, and/or tolerance to ischemia.

Full Text

The Full Text of this article is available as a PDF (253.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akimoto K., Mizuno K., Osada S., Hirai S., Tanuma S., Suzuki K., Ohno S. A new member of the third class in the protein kinase C family, PKC lambda, expressed dominantly in an undifferentiated mouse embryonal carcinoma cell line and also in many tissues and cells. J Biol Chem. 1994 Apr 29;269(17):12677–12683. [PubMed] [Google Scholar]
  2. Butterfield M. C., Chess-Williams R. Enhanced alpha-adrenoceptor responsiveness and receptor number during global ischaemia in the Langendorff perfused rat heart. Br J Pharmacol. 1990 Jul;100(3):641–645. doi: 10.1111/j.1476-5381.1990.tb15860.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cacace A. M., Guadagno S. N., Krauss R. S., Fabbro D., Weinstein I. B. The epsilon isoform of protein kinase C is an oncogene when overexpressed in rat fibroblasts. Oncogene. 1993 Aug;8(8):2095–2104. [PubMed] [Google Scholar]
  4. Church D. J., Braconi S., Vallotton M. B., Lang U. Protein kinase C-mediated phospholipase A2 activation, platelet-activating factor generation and prostacyclin release in spontaneously beating rat cardiomyocytes. Biochem J. 1993 Mar 1;290(Pt 2):477–482. doi: 10.1042/bj2900477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clerk A., Bogoyevitch M. A., Anderson M. B., Sugden P. H. Differential activation of protein kinase C isoforms by endothelin-1 and phenylephrine and subsequent stimulation of p42 and p44 mitogen-activated protein kinases in ventricular myocytes cultured from neonatal rat hearts. J Biol Chem. 1994 Dec 30;269(52):32848–32857. [PubMed] [Google Scholar]
  6. Clerk A., Bogoyevitch M. A., Fuller S. J., Lazou A., Parker P. J., Sugden P. H. Expression of protein kinase C isoforms during cardiac ventricular development. Am J Physiol. 1995 Sep;269(3 Pt 2):H1087–H1097. doi: 10.1152/ajpheart.1995.269.3.H1087. [DOI] [PubMed] [Google Scholar]
  7. Corr P. B., Shayman J. A., Kramer J. B., Kipnis R. J. Increased alpha-adrenergic receptors in ischemic cat myocardium. A potential mediator of electrophysiological derangements. J Clin Invest. 1981 Apr;67(4):1232–1236. doi: 10.1172/JCI110139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dillon J. S., Gu X. H., Nayler W. G. Alpha 1 adrenoceptors in the ischaemic and reperfused myocardium. J Mol Cell Cardiol. 1988 Aug;20(8):725–735. doi: 10.1016/s0022-2828(88)80017-8. [DOI] [PubMed] [Google Scholar]
  9. Disatnik M. H., Buraggi G., Mochly-Rosen D. Localization of protein kinase C isozymes in cardiac myocytes. Exp Cell Res. 1994 Feb;210(2):287–297. doi: 10.1006/excr.1994.1041. [DOI] [PubMed] [Google Scholar]
  10. Goode N., Hughes K., Woodgett J. R., Parker P. J. Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes. J Biol Chem. 1992 Aug 25;267(24):16878–16882. [PubMed] [Google Scholar]
  11. Guadagno S. N., Borner C., Weinstein I. B. Altered regulation of a major substrate of protein kinase C in rat 6 fibroblasts overproducing PKC beta I. J Biol Chem. 1992 Feb 5;267(4):2697–2707. [PubMed] [Google Scholar]
  12. Heathers G. P., Evers A. S., Corr P. B. Enhanced inositol trisphosphate response to alpha 1-adrenergic stimulation in cardiac myocytes exposed to hypoxia. J Clin Invest. 1989 Apr;83(4):1409–1413. doi: 10.1172/JCI114030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heathers G. P., Yamada K. A., Kanter E. M., Corr P. B. Long-chain acylcarnitines mediate the hypoxia-induced increase in alpha 1-adrenergic receptors on adult canine myocytes. Circ Res. 1987 Nov;61(5):735–746. doi: 10.1161/01.res.61.5.735. [DOI] [PubMed] [Google Scholar]
  14. Hyatt S. L., Liao L., Chapline C., Jaken S. Identification and characterization of alpha-protein kinase C binding proteins in normal and transformed REF52 cells. Biochemistry. 1994 Feb 8;33(5):1223–1228. doi: 10.1021/bi00171a023. [DOI] [PubMed] [Google Scholar]
  15. Jiang T., Kuznetsov V., Pak E., Zhang H., Robinson R. B., Steinberg S. F. Thrombin receptor actions in neonatal rat ventricular myocytes. Circ Res. 1996 Apr;78(4):553–563. doi: 10.1161/01.res.78.4.553. [DOI] [PubMed] [Google Scholar]
  16. Jiang T., Pak E., Zhang H. L., Kline R. P., Steinberg S. F. Endothelin-dependent actions in cultured AT-1 cardiac myocytes. The role of the epsilon isoform of protein kinase C. Circ Res. 1996 Apr;78(4):724–736. doi: 10.1161/01.res.78.4.724. [DOI] [PubMed] [Google Scholar]
  17. Johnson J. A., Mochly-Rosen D. Inhibition of the spontaneous rate of contraction of neonatal cardiac myocytes by protein kinase C isozymes. A putative role for the epsilon isozyme. Circ Res. 1995 Apr;76(4):654–663. doi: 10.1161/01.res.76.4.654. [DOI] [PubMed] [Google Scholar]
  18. Kolch W., Heidecker G., Kochs G., Hummel R., Vahidi H., Mischak H., Finkenzeller G., Marmé D., Rapp U. R. Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature. 1993 Jul 15;364(6434):249–252. doi: 10.1038/364249a0. [DOI] [PubMed] [Google Scholar]
  19. Lawson C. S., Downey J. M. Preconditioning: state of the art myocardial protection. Cardiovasc Res. 1993 Apr;27(4):542–550. doi: 10.1093/cvr/27.4.542. [DOI] [PubMed] [Google Scholar]
  20. Li Y., Kloner R. A. Does protein kinase C play a role in ischemic preconditioning in rat hearts? Am J Physiol. 1995 Jan;268(1 Pt 2):H426–H431. doi: 10.1152/ajpheart.1995.268.1.H426. [DOI] [PubMed] [Google Scholar]
  21. Maisel A. S., Motulsky H. J., Ziegler M. G., Insel P. A. Ischemia- and agonist-induced changes in alpha- and beta-adrenergic receptor traffic in guinea pig hearts. Am J Physiol. 1987 Nov;253(5 Pt 2):H1159–H1166. doi: 10.1152/ajpheart.1987.253.5.H1159. [DOI] [PubMed] [Google Scholar]
  22. Mitchell M. B., Meng X., Ao L., Brown J. M., Harken A. H., Banerjee A. Preconditioning of isolated rat heart is mediated by protein kinase C. Circ Res. 1995 Jan;76(1):73–81. doi: 10.1161/01.res.76.1.73. [DOI] [PubMed] [Google Scholar]
  23. Mochly-Rosen D., Henrich C. J., Cheever L., Khaner H., Simpson P. C. A protein kinase C isozyme is translocated to cytoskeletal elements on activation. Cell Regul. 1990 Aug;1(9):693–706. doi: 10.1091/mbc.1.9.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mochly-Rosen D. Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science. 1995 Apr 14;268(5208):247–251. doi: 10.1126/science.7716516. [DOI] [PubMed] [Google Scholar]
  25. Müller-Decker K. Interruption of TPA-induced signals by an antiviral and antitumoral xanthate compound: inhibition of a phospholipase C-type reaction. Biochem Biophys Res Commun. 1989 Jul 14;162(1):198–205. doi: 10.1016/0006-291x(89)91981-5. [DOI] [PubMed] [Google Scholar]
  26. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
  27. Noland T. A., Jr, Kuo J. F. Protein kinase C phosphorylation of cardiac troponin I or troponin T inhibits Ca2(+)-stimulated actomyosin MgATPase activity. J Biol Chem. 1991 Mar 15;266(8):4974–4978. [PubMed] [Google Scholar]
  28. Pucéat M., Clément O., Scamps F., Vassort G. Extracellular ATP-induced acidification leads to cytosolic calcium transient rise in single rat cardiac myocytes. Biochem J. 1991 Feb 15;274(Pt 1):55–62. doi: 10.1042/bj2740055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pucéat M., Hilal-Dandan R., Strulovici B., Brunton L. L., Brown J. H. Differential regulation of protein kinase C isoforms in isolated neonatal and adult rat cardiomyocytes. J Biol Chem. 1994 Jun 17;269(24):16938–16944. [PubMed] [Google Scholar]
  30. Ron D., Chen C. H., Caldwell J., Jamieson L., Orr E., Mochly-Rosen D. Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):839–843. doi: 10.1073/pnas.91.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rybin V. O., Steinberg S. F. Protein kinase C isoform expression and regulation in the developing rat heart. Circ Res. 1994 Feb;74(2):299–309. doi: 10.1161/01.res.74.2.299. [DOI] [PubMed] [Google Scholar]
  32. Sadoshima J., Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J. 1993 Apr;12(4):1681–1692. doi: 10.1002/j.1460-2075.1993.tb05813.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sadoshima J., Xu Y., Slayter H. S., Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993 Dec 3;75(5):977–984. doi: 10.1016/0092-8674(93)90541-w. [DOI] [PubMed] [Google Scholar]
  34. Saido T. C., Mizuno K., Konno Y., Osada S., Ohno S., Suzuki K. Purification and characterization of protein kinase C epsilon from rabbit brain. Biochemistry. 1992 Jan 21;31(2):482–490. doi: 10.1021/bi00117a026. [DOI] [PubMed] [Google Scholar]
  35. Schütze S., Potthoff K., Machleidt T., Berkovic D., Wiegmann K., Krönke M. TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced "acidic" sphingomyelin breakdown. Cell. 1992 Nov 27;71(5):765–776. doi: 10.1016/0092-8674(92)90553-o. [DOI] [PubMed] [Google Scholar]
  36. Seko Y., Tobe K., Ueki K., Kadowaki T., Yazaki Y. Hypoxia and hypoxia/reoxygenation activate Raf-1, mitogen-activated protein kinase kinase, mitogen-activated protein kinases, and S6 kinase in cultured rat cardiac myocytes. Circ Res. 1996 Jan;78(1):82–90. doi: 10.1161/01.res.78.1.82. [DOI] [PubMed] [Google Scholar]
  37. Selbie L. A., Schmitz-Peiffer C., Sheng Y., Biden T. J. Molecular cloning and characterization of PKC iota, an atypical isoform of protein kinase C derived from insulin-secreting cells. J Biol Chem. 1993 Nov 15;268(32):24296–24302. [PubMed] [Google Scholar]
  38. Speechly-Dick M. E., Mocanu M. M., Yellon D. M. Protein kinase C. Its role in ischemic preconditioning in the rat. Circ Res. 1994 Sep;75(3):586–590. doi: 10.1161/01.res.75.3.586. [DOI] [PubMed] [Google Scholar]
  39. Steinberg S. F., Alter A. Enhanced receptor-dependent inositol phosphate accumulation in hypoxic myocytes. Am J Physiol. 1993 Aug;265(2 Pt 2):H691–H699. doi: 10.1152/ajpheart.1993.265.2.H691. [DOI] [PubMed] [Google Scholar]
  40. Steinberg S. F., Goldberg M., Rybin V. O. Protein kinase C isoform diversity in the heart. J Mol Cell Cardiol. 1995 Jan;27(1):141–153. doi: 10.1016/s0022-2828(08)80014-4. [DOI] [PubMed] [Google Scholar]
  41. Steinberg S. F., Kaplan L. M., Inouye T., Zhang J. F., Robinson R. B. Alpha-1 adrenergic stimulation of 1,4,5-inositol trisphosphate formation in ventricular myocytes. J Pharmacol Exp Ther. 1989 Sep;250(3):1141–1148. [PubMed] [Google Scholar]
  42. Steinberg S. F., Robinson R. B., Lieberman H. B., Stern D. M., Rosen M. R. Thrombin modulates phosphoinositide metabolism, cytosolic calcium, and impulse initiation in the heart. Circ Res. 1991 May;68(5):1216–1229. doi: 10.1161/01.res.68.5.1216. [DOI] [PubMed] [Google Scholar]
  43. Strasser R. H., Braun-Dullaeus R., Walendzik H., Marquetant R. Alpha 1-receptor-independent activation of protein kinase C in acute myocardial ischemia. Mechanisms for sensitization of the adenylyl cyclase system. Circ Res. 1992 Jun;70(6):1304–1312. doi: 10.1161/01.res.70.6.1304. [DOI] [PubMed] [Google Scholar]
  44. Webster K. A., Discher D. J., Bishopric N. H. Induction and nuclear accumulation of fos and jun proto-oncogenes in hypoxic cardiac myocytes. J Biol Chem. 1993 Aug 5;268(22):16852–16858. [PubMed] [Google Scholar]
  45. Wieloch T., Cardell M., Bingren H., Zivin J., Saitoh T. Changes in the activity of protein kinase C and the differential subcellular redistribution of its isozymes in the rat striatum during and following transient forebrain ischemia. J Neurochem. 1991 Apr;56(4):1227–1235. doi: 10.1111/j.1471-4159.1991.tb11415.x. [DOI] [PubMed] [Google Scholar]
  46. Yamazaki T., Komuro I., Kudoh S., Zou Y., Shiojima I., Hiroi Y., Mizuno T., Maemura K., Kurihara H., Aikawa R. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem. 1996 Feb 9;271(6):3221–3228. doi: 10.1074/jbc.271.6.3221. [DOI] [PubMed] [Google Scholar]
  47. Yoshida K., Yamasaki Y., Kawashima S. Calpain activity alters in rat myocardial subfractions after ischemia or reperfusion. Biochim Biophys Acta. 1993 Sep 8;1182(2):215–220. doi: 10.1016/0925-4439(93)90143-o. [DOI] [PubMed] [Google Scholar]
  48. Zhang J. F., Robinson R. B., Siegelbaum S. A. Sympathetic neurons mediate developmental change in cardiac sodium channel gating through long-term neurotransmitter action. Neuron. 1992 Jul;9(1):97–103. doi: 10.1016/0896-6273(92)90224-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES