Abstract
We compared the effects of endothelin-1 (ET-1) on intracellular pH, intracellular [Ca2+]i, and cell contraction in hypertrophied adult ventricular myocytes from ascending aortic banded rats and age-matched controls. Intracellular pH (pH(i)) was measured in individual myocytes with SNARF-1, and [Ca2+]i was measured with indo-1, simultaneous with cell motion. Experiments were performed at 36 degrees C in myocytes paced at 0.5 Hz in Hepes-buffered solution (pH(o) 7.40) containing 1.2 mM CaCl2. At baseline, calibrated pH(i), diastolic and systolic [Ca2+]i values, and the amplitude of cell contraction were similar in hypertrophied and control myocytes. Exposure of the control myocytes to 10 nM ET-1 caused an increase in the amplitude of cell contraction to 163+/-22% of baseline (P < 0.05), associated with intracellular alkalinization (pH(i) + 0.08+/-0.02 U, P < 0.05) and a slight increase in peak systolic [Ca2+]i (104+/-11% of baseline, P < 0.05). In contrast, in the hypertrophied myocytes, exposure to ET-1 did not increase the amplitude of cell contraction or cause intracellular alkalinization (-0.01+/-0.02 U, NS). Similar effects were observed in the hypertrophied and control myocytes in response to exposure to 10 nM angiotensin II. ET-1 also increased the rate of recovery from intracellular acidosis induced by the washout of NH4Cl in the control cells, but did not do so in the hypertrophied cells. In the presence of 10 microM 5-(N-ethyl-N-isopropyl)-amiloride, which inhibits Na+-H+ exchange, ET-1 did not cause a positive inotropic effect or intracellular alkalinization in control cells. The activation of protein kinase C by exposure to phorbol ester caused intracellular alkalinization and it increased the rate of recovery from intracellular acidification induced by an NH4Cl pulse in control cells but not in hypertrophied cells. ET-1, as well as angiotensin II, and phorbol ester, fail to stimulate forward Na+-H+ exchange in adult hypertrophied myocytes. These data suggest a defect in the coupling of protein kinase C signaling with Na+-H+ exchange in adult hypertrophied myocytes.
Full Text
The Full Text of this article is available as a PDF (224.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen I. S., Cohen N. M., Dhallan R. S., Gaa S. T., Lederer W. J., Rogers T. B. Angiotensin II increases spontaneous contractile frequency and stimulates calcium current in cultured neonatal rat heart myocytes: insights into the underlying biochemical mechanisms. Circ Res. 1988 Mar;62(3):524–534. doi: 10.1161/01.res.62.3.524. [DOI] [PubMed] [Google Scholar]
- Arkhammar P., Nilsson T., Berggren P. O. Glucose-stimulated efflux of indo-1 from pancreatic beta-cells is reduced by probenecid. FEBS Lett. 1990 Oct 29;273(1-2):182–184. doi: 10.1016/0014-5793(90)81079-4. [DOI] [PubMed] [Google Scholar]
- Borzak S., Kelly R. A., Krämer B. K., Matoba Y., Marsh J. D., Reers M. In situ calibration of fura-2 and BCECF fluorescence in adult rat ventricular myocytes. Am J Physiol. 1990 Sep;259(3 Pt 2):H973–H981. doi: 10.1152/ajpheart.1990.259.3.H973. [DOI] [PubMed] [Google Scholar]
- Capogrossi M. C., Kort A. A., Spurgeon H. A., Lakatta E. G. Single adult rabbit and rat cardiac myocytes retain the Ca2+- and species-dependent systolic and diastolic contractile properties of intact muscle. J Gen Physiol. 1986 Nov;88(5):589–613. doi: 10.1085/jgp.88.5.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheung J. Y., Tillotson D. L., Yelamarty R. V., Scaduto R. C., Jr Cytosolic free calcium concentration in individual cardiac myocytes in primary culture. Am J Physiol. 1989 Jun;256(6 Pt 1):C1120–C1130. doi: 10.1152/ajpcell.1989.256.6.C1120. [DOI] [PubMed] [Google Scholar]
- Chien K. R., Knowlton K. U., Zhu H., Chien S. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J. 1991 Dec;5(15):3037–3046. doi: 10.1096/fasebj.5.15.1835945. [DOI] [PubMed] [Google Scholar]
- Di Virgilio F., Steinberg T. H., Swanson J. A., Silverstein S. C. Fura-2 secretion and sequestration in macrophages. A blocker of organic anion transport reveals that these processes occur via a membrane transport system for organic anions. J Immunol. 1988 Feb 1;140(3):915–920. [PubMed] [Google Scholar]
- Eberli F. R., Apstein C. S., Ngoy S., Lorell B. H. Exacerbation of left ventricular ischemic diastolic dysfunction by pressure-overload hypertrophy. Modification by specific inhibition of cardiac angiotensin converting enzyme. Circ Res. 1992 May;70(5):931–943. doi: 10.1161/01.res.70.5.931. [DOI] [PubMed] [Google Scholar]
- Fareh J., Touyz R. M., Schiffrin E. L., Thibault G. Endothelin-1 and angiotensin II receptors in cells from rat hypertrophied heart. Receptor regulation and intracellular Ca2+ modulation. Circ Res. 1996 Feb;78(2):302–311. doi: 10.1161/01.res.78.2.302. [DOI] [PubMed] [Google Scholar]
- Feldman A. M., Weinberg E. O., Ray P. E., Lorell B. H. Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res. 1993 Jul;73(1):184–192. doi: 10.1161/01.res.73.1.184. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Haddad J., Decker M. L., Hsieh L. C., Lesch M., Samarel A. M., Decker R. S. Attachment and maintenance of adult rabbit cardiac myocytes in primary cell culture. Am J Physiol. 1988 Jul;255(1 Pt 1):C19–C27. doi: 10.1152/ajpcell.1988.255.1.C19. [DOI] [PubMed] [Google Scholar]
- Ikenouchi H., Barry W. H., Bridge J. H., Weinberg E. O., Apstein C. S., Lorell B. H. Effects of angiotensin II on intracellular Ca2+ and pH in isolated beating rabbit hearts and myocytes loaded with the indicator indo-1. J Physiol. 1994 Oct 15;480(Pt 2):203–215. doi: 10.1113/jphysiol.1994.sp020353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikenouchi H., Kohmoto O., McMillan M., Barry W. H. Contributions of [Ca2+]i, [Pi]i, and pHi to altered diastolic myocyte tone during partial metabolic inhibition. J Clin Invest. 1991 Jul;88(1):55–61. doi: 10.1172/JCI115304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Izumo S., Nadal-Ginard B., Mahdavi V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci U S A. 1988 Jan;85(2):339–343. doi: 10.1073/pnas.85.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kagaya Y., Weinberg E. O., Ito N., Mochizuki T., Barry W. H., Lorell B. H. Glycolytic inhibition: effects on diastolic relaxation and intracellular calcium handling in hypertrophied rat ventricular myocytes. J Clin Invest. 1995 Jun;95(6):2766–2776. doi: 10.1172/JCI117980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaibara M., Mitarai S., Yano K., Kameyama M. Involvement of Na(+)-H+ antiporter in regulation of L-type Ca2+ channel current by angiotensin II in rabbit ventricular myocytes. Circ Res. 1994 Dec;75(6):1121–1125. doi: 10.1161/01.res.75.6.1121. [DOI] [PubMed] [Google Scholar]
- Kem D. C., Johnson E. I., Capponi A. M., Chardonnens D., Lang U., Blondel B., Koshida H., Vallotton M. B. Effect of angiotensin II on cytosolic free calcium in neonatal rat cardiomyocytes. Am J Physiol. 1991 Jul;261(1 Pt 1):C77–C85. doi: 10.1152/ajpcell.1991.261.1.C77. [DOI] [PubMed] [Google Scholar]
- Kohmoto O., Ikenouchi H., Hirata Y., Momomura S., Serizawa T., Barry W. H. Variable effects of endothelin-1 on [Ca2+]i transients, pHi, and contraction in ventricular myocytes. Am J Physiol. 1993 Sep;265(3 Pt 2):H793–H800. doi: 10.1152/ajpheart.1993.265.3.H793. [DOI] [PubMed] [Google Scholar]
- Krämer B. K., Smith T. W., Kelly R. A. Endothelin and increased contractility in adult rat ventricular myocytes. Role of intracellular alkalosis induced by activation of the protein kinase C-dependent Na(+)-H+ exchanger. Circ Res. 1991 Jan;68(1):269–279. doi: 10.1161/01.res.68.1.269. [DOI] [PubMed] [Google Scholar]
- Lagadic-Gossmann D., Buckler K. J., Vaughan-Jones R. D. Role of bicarbonate in pH recovery from intracellular acidosis in the guinea-pig ventricular myocyte. J Physiol. 1992 Dec;458:361–384. doi: 10.1113/jphysiol.1992.sp019422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Litwin S. E., Katz S. E., Weinberg E. O., Lorell B. H., Aurigemma G. P., Douglas P. S. Serial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy. Chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure. Circulation. 1995 May 15;91(10):2642–2654. doi: 10.1161/01.cir.91.10.2642. [DOI] [PubMed] [Google Scholar]
- Lopez J. J., Lorell B. H., Ingelfinger J. R., Weinberg E. O., Schunkert H., Diamant D., Tang S. S. Distribution and function of cardiac angiotensin AT1- and AT2-receptor subtypes in hypertrophied rat hearts. Am J Physiol. 1994 Aug;267(2 Pt 2):H844–H852. doi: 10.1152/ajpheart.1994.267.2.H844. [DOI] [PubMed] [Google Scholar]
- MacLeod K. T., Harding S. E. Effects of phorbol ester on contraction, intracellular pH and intracellular Ca2+ in isolated mammalian ventricular myocytes. J Physiol. 1991 Dec;444:481–498. doi: 10.1113/jphysiol.1991.sp018889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsui H., Barry W. H., Livsey C., Spitzer K. W. Angiotensin II stimulates sodium-hydrogen exchange in adult rabbit ventricular myocytes. Cardiovasc Res. 1995 Feb;29(2):215–221. [PubMed] [Google Scholar]
- Pirolo J. S., Allen D. G. Assessment of techniques for preventing glycolysis in cardiac muscle. Cardiovasc Res. 1986 Nov;20(11):837–844. doi: 10.1093/cvr/20.11.837. [DOI] [PubMed] [Google Scholar]
- Sadoshima J., Xu Y., Slayter H. S., Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993 Dec 3;75(5):977–984. doi: 10.1016/0092-8674(93)90541-w. [DOI] [PubMed] [Google Scholar]
- Schunkert H., Dzau V. J., Tang S. S., Hirsch A. T., Apstein C. S., Lorell B. H. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest. 1990 Dec;86(6):1913–1920. doi: 10.1172/JCI114924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schunkert H., Jackson B., Tang S. S., Schoen F. J., Smits J. F., Apstein C. S., Lorell B. H. Distribution and functional significance of cardiac angiotensin converting enzyme in hypertrophied rat hearts. Circulation. 1993 Apr;87(4):1328–1339. doi: 10.1161/01.cir.87.4.1328. [DOI] [PubMed] [Google Scholar]
- Schunkert H., Jahn L., Izumo S., Apstein C. S., Lorell B. H. Localization and regulation of c-fos and c-jun protooncogene induction by systolic wall stress in normal and hypertrophied rat hearts. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11480–11484. doi: 10.1073/pnas.88.24.11480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schunkert H., Sadoshima J., Cornelius T., Kagaya Y., Weinberg E. O., Izumo S., Riegger G., Lorell B. H. Angiotensin II-induced growth responses in isolated adult rat hearts. Evidence for load-independent induction of cardiac protein synthesis by angiotensin II. Circ Res. 1995 Mar;76(3):489–497. doi: 10.1161/01.res.76.3.489. [DOI] [PubMed] [Google Scholar]
- Schunkert H., Weinberg E. O., Bruckschlegel G., Riegger A. J., Lorell B. H. Alteration of growth responses in established cardiac pressure overload hypertrophy in rats with aortic banding. J Clin Invest. 1995 Dec;96(6):2768–2774. doi: 10.1172/JCI118346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shubeita H. E., McDonough P. M., Harris A. N., Knowlton K. U., Glembotski C. C., Brown J. H., Chien K. R. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem. 1990 Nov 25;265(33):20555–20562. [PubMed] [Google Scholar]
- Sollott S. J., Ziman B. D., Lakatta E. G. Novel technique to load indo-1 free acid into single adult cardiac myocytes to assess cytosolic Ca2+. Am J Physiol. 1992 Jun;262(6 Pt 2):H1941–H1949. doi: 10.1152/ajpheart.1992.262.6.H1941. [DOI] [PubMed] [Google Scholar]
- Spitzer K. W., Bridge J. H. Relationship between intracellular pH and tension development in resting ventricular muscle and myocytes. Am J Physiol. 1992 Feb;262(2 Pt 1):C316–C327. doi: 10.1152/ajpcell.1992.262.2.C316. [DOI] [PubMed] [Google Scholar]
- Steadman B. W., Moore K. B., Spitzer K. W., Bridge J. H. A video system for measuring motion in contracting heart cells. IEEE Trans Biomed Eng. 1988 Apr;35(4):264–272. doi: 10.1109/10.1375. [DOI] [PubMed] [Google Scholar]
- Wang J. X., Paik G., Morgan J. P. Endothelin 1 enhances myofilament Ca2+ responsiveness in aequorin-loaded ferret myocardium. Circ Res. 1991 Sep;69(3):582–589. doi: 10.1161/01.res.69.3.582. [DOI] [PubMed] [Google Scholar]
- Weinberg E. O., Schoen F. J., George D., Kagaya Y., Douglas P. S., Litwin S. E., Schunkert H., Benedict C. R., Lorell B. H. Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation. 1994 Sep;90(3):1410–1422. doi: 10.1161/01.cir.90.3.1410. [DOI] [PubMed] [Google Scholar]
- Xu P., Spitzer K. W. Na-independent Cl(-)-HCO3- exchange mediates recovery of pHi from alkalosis in guinea pig ventricular myocytes. Am J Physiol. 1994 Jul;267(1 Pt 2):H85–H91. doi: 10.1152/ajpheart.1994.267.1.H85. [DOI] [PubMed] [Google Scholar]