Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jan 15;99(2):163–168. doi: 10.1172/JCI119143

Sepsis is associated with increased mRNAs of the ubiquitin-proteasome proteolytic pathway in human skeletal muscle.

G Tiao 1, S Hobler 1, J J Wang 1, T A Meyer 1, F A Luchette 1, J E Fischer 1, P O Hasselgren 1
PMCID: PMC507782  PMID: 9005983

Abstract

Previous studies provided evidence that sepsis-induced muscle proteolysis in experimental animals is caused by increased ubiquitin-proteasome-dependent protein breakdown. It is not known if a similar mechanism accounts for muscle proteolysis in patients with sepsis. We determined mRNA levels for ubiquitin and the 20 S proteasome subunit HC3 by Northern blot analysis in muscle tissue from septic (n = 7) and non-septic (n = 11) patients. Plasma and muscle amino acid concentrations and concentrations in urine of 3-methylhistidine (3-MH), creatinine, and cortisol were measured at the time of surgery to assess the catabolic state of the patients. A three- to fourfold increase in mRNA levels for ubiquitin and HC3 was noted in muscle tissue from the septic patients concomitant with increased muscle levels of phenylalanine and 3-MH and reduced levels of glutamine. Total plasma amino acids were decreased by approximately 30% in the septic patients. The 3-MH/creatinine ratio in urine was almost doubled in septic patients. The cortisol levels in urine were higher in septic than in control patients but this difference did not reach statistical significance. The results suggest that sepsis is associated with increased mRNAs of the ubiquitin-proteasome pathway in human skeletal muscle.

Full Text

The Full Text of this article is available as a PDF (186.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ardawi M. S., Majzoub M. F. Glutamine metabolism in skeletal muscle of septic rats. Metabolism. 1991 Feb;40(2):155–164. doi: 10.1016/0026-0495(91)90167-u. [DOI] [PubMed] [Google Scholar]
  2. Askanazi J., Carpentier Y. A., Michelsen C. B., Elwyn D. H., Furst P., Kantrowitz L. R., Gump F. E., Kinney J. M. Muscle and plasma amino acids following injury. Influence of intercurrent infection. Ann Surg. 1980 Jul;192(1):78–85. doi: 10.1097/00000658-198007000-00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailey J. L., Wang X., England B. K., Price S. R., Ding X., Mitch W. E. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway. J Clin Invest. 1996 Mar 15;97(6):1447–1453. doi: 10.1172/JCI118566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bone R. C. Sepsis syndrome. New insights into its pathogenesis and treatment. Infect Dis Clin North Am. 1991 Dec;5(4):793–805. [PubMed] [Google Scholar]
  5. Canalis E., Reardon G. E., Caldarella A. M. A more specific, liquid-chromatographic method for free cortisol in urine. Clin Chem. 1982 Dec;28(12):2418–2420. [PubMed] [Google Scholar]
  6. Costelli P., García-Martínez C., Llovera M., Carbó N., López-Soriano F. J., Agell N., Tessitore L., Baccino F. M., Argilés J. M. Muscle protein waste in tumor-bearing rats is effectively antagonized by a beta 2-adrenergic agonist (clenbuterol). Role of the ATP-ubiquitin-dependent proteolytic pathway. J Clin Invest. 1995 May;95(5):2367–2372. doi: 10.1172/JCI117929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dardevet D., Sornet C., Taillandier D., Savary I., Attaix D., Grizard J. Sensitivity and protein turnover response to glucocorticoids are different in skeletal muscle from adult and old rats. Lack of regulation of the ubiquitin-proteasome proteolytic pathway in aging. J Clin Invest. 1995 Nov;96(5):2113–2119. doi: 10.1172/JCI118264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fang C. H., Tiao G., James H., Ogle C., Fischer J. E., Hasselgren P. O. Burn injury stimulates multiple proteolytic pathways in skeletal muscle, including the ubiquitin-energy-dependent pathway. J Am Coll Surg. 1995 Feb;180(2):161–170. [PubMed] [Google Scholar]
  9. Freund H. R., Ryan J. A., Jr, Fischer J. E. Amino acid derangements in patients with sepsis: treatment with branched chain amino acid rich infusions. Ann Surg. 1978 Sep;188(3):423–430. doi: 10.1097/00000658-197809000-00017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Freund H., Atamian S., Holroyde J., Fischer J. E. Plasma amino acids as predictors of the severity and outcome of sepsis. Ann Surg. 1979 Nov;190(5):571–576. doi: 10.1097/00000658-197911000-00003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Furuno K., Goodman M. N., Goldberg A. L. Role of different proteolytic systems in the degradation of muscle proteins during denervation atrophy. J Biol Chem. 1990 May 25;265(15):8550–8557. [PubMed] [Google Scholar]
  12. Graser T. A., Godel H. G., Albers S., Földi P., Fürst P. An ultra rapid and sensitive high-performance liquid chromatographic method for determination of tissue and plasma free amino acids. Anal Biochem. 1985 Nov 15;151(1):142–152. doi: 10.1016/0003-2697(85)90064-8. [DOI] [PubMed] [Google Scholar]
  13. Hasselgren P. O., Adlerberth A., Angerås U., Stenström G. Protein metabolism in skeletal muscle tissue from hyperthyroid patients after preoperative treatment with antithyroid drug or selective beta-blocking agent. Results from a prospective, randomized study. J Clin Endocrinol Metab. 1984 Nov;59(5):835–839. doi: 10.1210/jcem-59-5-835. [DOI] [PubMed] [Google Scholar]
  14. Hasselgren P. O., Säljö A., Seeman T. Protein turnover in skeletal muscle tissue from patients with hyperparathyroidism and the effect of calcium in vitro. Eur Surg Res. 1986;18(6):337–342. doi: 10.1159/000128544. [DOI] [PubMed] [Google Scholar]
  15. Hershko A., Ciechanover A. The ubiquitin system for protein degradation. Annu Rev Biochem. 1992;61:761–807. doi: 10.1146/annurev.bi.61.070192.003553. [DOI] [PubMed] [Google Scholar]
  16. James J. H., Hasselgren P. O., King J. K., James L. E., Fischer J. E. Intracellular glutamine concentration does not decrease in all muscles during sepsis. J Surg Res. 1993 Jun;54(6):558–564. doi: 10.1006/jsre.1993.1085. [DOI] [PubMed] [Google Scholar]
  17. Knaus W. A., Draper E. A., Wagner D. P., Zimmerman J. E. APACHE II: a severity of disease classification system. Crit Care Med. 1985 Oct;13(10):818–829. [PubMed] [Google Scholar]
  18. Llovera M., García-Martínez C., Agell N., Marzábal M., López-Soriano F. J., Argilés J. M. Ubiquitin gene expression is increased in skeletal muscle of tumour-bearing rats. FEBS Lett. 1994 Feb 7;338(3):311–318. doi: 10.1016/0014-5793(94)80290-4. [DOI] [PubMed] [Google Scholar]
  19. Long C. L., Birkhahn R. H., Geiger J. W., Betts J. E., Schiller W. R., Blakemore W. S. Urinary excretion of 3-methylhistidine: an assessment of muscle protein catabolism in adult normal subjects and during malnutrition, sepsis, and skeletal trauma. Metabolism. 1981 Aug;30(8):765–776. doi: 10.1016/0026-0495(81)90022-6. [DOI] [PubMed] [Google Scholar]
  20. Long C. L., Haverberg L. N., Young V. R., Kinney J. M., Munro H. N., Geiger J. W. Metabolism of 3-methylhistidine in man. Metabolism. 1975 Aug;24(8):929–935. doi: 10.1016/0026-0495(75)90084-0. [DOI] [PubMed] [Google Scholar]
  21. Lundholm K., Scherstén T. Protein synthesis in isolated human skeletal muscle tissue: evaluation of an experimental model. Clin Sci (Lond) 1979 Aug;57(2):221–223. doi: 10.1042/cs0570221. [DOI] [PubMed] [Google Scholar]
  22. Löwe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science. 1995 Apr 28;268(5210):533–539. doi: 10.1126/science.7725097. [DOI] [PubMed] [Google Scholar]
  23. MacLennan P. A., Brown R. A., Rennie M. J. A positive relationship between protein synthetic rate and intracellular glutamine concentration in perfused rat skeletal muscle. FEBS Lett. 1987 May 4;215(1):187–191. doi: 10.1016/0014-5793(87)80139-4. [DOI] [PubMed] [Google Scholar]
  24. Mansoor O., Beaufrere B., Boirie Y., Ralliere C., Taillandier D., Aurousseau E., Schoeffler P., Arnal M., Attaix D. Increased mRNA levels for components of the lysosomal, Ca2+-activated, and ATP-ubiquitin-dependent proteolytic pathways in skeletal muscle from head trauma patients. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2714–2718. doi: 10.1073/pnas.93.7.2714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Medina R., Wing S. S., Haas A., Goldberg A. L. Activation of the ubiquitin-ATP-dependent proteolytic system in skeletal muscle during fasting and denervation atrophy. Biomed Biochim Acta. 1991;50(4-6):347–356. [PubMed] [Google Scholar]
  26. Mitch W. E., Medina R., Grieber S., May R. C., England B. K., Price S. R., Bailey J. L., Goldberg A. L. Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes. J Clin Invest. 1994 May;93(5):2127–2133. doi: 10.1172/JCI117208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Price S. R., England B. K., Bailey J. L., Van Vreede K., Mitch W. E. Acidosis and glucocorticoids concomitantly increase ubiquitin and proteasome subunit mRNAs in rat muscle. Am J Physiol. 1994 Oct;267(4 Pt 1):C955–C960. doi: 10.1152/ajpcell.1994.267.4.C955. [DOI] [PubMed] [Google Scholar]
  28. Suzuki T., Nishikawa T. PCR amplification of cDNAs of fish hemoglobin beta chains using a consensus primer: cDNA-derived amino acid sequences of beta chains from the catfish Parasilurus asotus and the scad Decapterus maruadsi. J Protein Chem. 1996 May;15(4):389–394. doi: 10.1007/BF01886865. [DOI] [PubMed] [Google Scholar]
  29. Tanaka K. Molecular biology of proteasomes. Mol Biol Rep. 1995;21(1):21–26. doi: 10.1007/BF00990966. [DOI] [PubMed] [Google Scholar]
  30. Tiao G., Fagan J. M., Samuels N., James J. H., Hudson K., Lieberman M., Fischer J. E., Hasselgren P. O. Sepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle. J Clin Invest. 1994 Dec;94(6):2255–2264. doi: 10.1172/JCI117588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tiao G., Fagan J., Roegner V., Lieberman M., Wang J. J., Fischer J. E., Hasselgren P. O. Energy-ubiquitin-dependent muscle proteolysis during sepsis in rats is regulated by glucocorticoids. J Clin Invest. 1996 Jan 15;97(2):339–348. doi: 10.1172/JCI118421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vente J. P., von Meyenfeldt M. F., van Eijk H. M., van Berlo C. L., Gouma D. J., van der Linden C. J., Soeters P. B. Plasma-amino acid profiles in sepsis and stress. Ann Surg. 1989 Jan;209(1):57–62. doi: 10.1097/00000658-198901000-00009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wannemacher R. W., Jr, Klainer A. S., Dinterman R. E., Beisel W. R. The significance and mechanism of an increased serum phenylalanine-tyrosine ratio during infection. Am J Clin Nutr. 1976 Sep;29(9):997–1006. doi: 10.1093/ajcn/29.9.997. [DOI] [PubMed] [Google Scholar]
  34. Weissman J. S., Sigler P. B., Horwich A. L. From the cradle to the grave: ring complexes in the life of a protein. Science. 1995 Apr 28;268(5210):523–524. doi: 10.1126/science.7725096. [DOI] [PubMed] [Google Scholar]
  35. Young V. R., Munro H. N. Ntau-methylhistidine (3-methylhistidine) and muscle protein turnover: an overview. Fed Proc. 1978 Jul;37(9):2291–2300. [PubMed] [Google Scholar]
  36. Zamir O., Hasselgren P. O., Frederick J. A., Fischer J. E. Is the metabolic response to sepsis in skeletal muscle different in infants and adults? An experimental study in rats. J Pediatr Surg. 1992 Nov;27(11):1399–1403. doi: 10.1016/0022-3468(92)90185-a. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES