Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jan 15;99(2):194–199. doi: 10.1172/JCI119147

Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis.

J L Brasier 1, E P Henske 1
PMCID: PMC507786  PMID: 9005987

Abstract

It is not known whether mutations in the PKD1 gene cause autosomal dominant polycystic kidney disease (PKD) by an activating (gain-of-function) or an inactivating (loss-of-function) model. We analyzed DNA from cyst epithelial cells for loss of heterozygosity (LOH) in the PKD1 region of chromosome 16p13 using microsatellite markers. 29 cysts from four patients were studied. Five cysts from three patients had chromosome 16p13 LOH. Four of the cysts had loss of two chromosome 16p13 markers that flank the PKD1 gene. In two patients, microsatellite analysis of family members was consistent with loss of the wild-type copy of PKD1 in the cysts. In the third patient, 16p13 LOH was detected in three separate cysts, all of which showed loss of the same alleles. Chromosome 3p21 LOH was detected in one cyst. No LOH was detected in four other genomic regions. These results demonstrate that some renal cyst epithelial cells exhibit clonal chromosomal abnormalities with loss of the wild-type copy of PKD1. This supports a loss-of-function model for autosomal dominant PKD, with a germline mutation inactivating one copy of PKD1 and somatic mutation or deletion inactivating the remaining wild-type copy.

Full Text

The Full Text of this article is available as a PDF (263.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein J., Evan A. P., Gardner K. D., Jr Epithelial hyperplasia in human polycystic kidney diseases. Its role in pathogenesis and risk of neoplasia. Am J Pathol. 1987 Oct;129(1):92–101. [PMC free article] [PubMed] [Google Scholar]
  2. Bernstein J., Robbins T. O. Renal involvement in tuberous sclerosis. Ann N Y Acad Sci. 1991;615:36–49. doi: 10.1111/j.1749-6632.1991.tb37746.x. [DOI] [PubMed] [Google Scholar]
  3. Brook-Carter P. T., Peral B., Ward C. J., Thompson P., Hughes J., Maheshwar M. M., Nellist M., Gamble V., Harris P. C., Sampson J. R. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease--a contiguous gene syndrome. Nat Genet. 1994 Dec;8(4):328–332. doi: 10.1038/ng1294-328. [DOI] [PubMed] [Google Scholar]
  4. Carone F. A., Nakamura S., Schumacher B. S., Punyarit P., Bauer K. D. Cyst-derived cells do not exhibit accelerated growth or features of transformed cells in vitro. Kidney Int. 1989 Jun;35(6):1351–1357. doi: 10.1038/ki.1989.134. [DOI] [PubMed] [Google Scholar]
  5. Esrig D., Elmajian D., Groshen S., Freeman J. A., Stein J. P., Chen S. C., Nichols P. W., Skinner D. G., Jones P. A., Cote R. J. Accumulation of nuclear p53 and tumor progression in bladder cancer. N Engl J Med. 1994 Nov 10;331(19):1259–1264. doi: 10.1056/NEJM199411103311903. [DOI] [PubMed] [Google Scholar]
  6. Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. doi: 10.1016/0092-8674(90)90186-i. [DOI] [PubMed] [Google Scholar]
  7. Gabow P. A. Autosomal dominant polycystic kidney disease. N Engl J Med. 1993 Jul 29;329(5):332–342. doi: 10.1056/NEJM199307293290508. [DOI] [PubMed] [Google Scholar]
  8. Gailani M. R., Ståhle-Bäckdahl M., Leffell D. J., Glynn M., Zaphiropoulos P. G., Pressman C., Undén A. B., Dean M., Brash D. E., Bale A. E. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet. 1996 Sep;14(1):78–81. doi: 10.1038/ng0996-78. [DOI] [PubMed] [Google Scholar]
  9. Grantham J. J., Geiser J. L., Evan A. P. Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int. 1987 May;31(5):1145–1152. doi: 10.1038/ki.1987.121. [DOI] [PubMed] [Google Scholar]
  10. Grantham J. J. Polycystic kidney disease: neoplasia in disguise. Am J Kidney Dis. 1990 Feb;15(2):110–116. doi: 10.1016/s0272-6386(12)80507-5. [DOI] [PubMed] [Google Scholar]
  11. Harris C. C., Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N Engl J Med. 1993 Oct 28;329(18):1318–1327. doi: 10.1056/NEJM199310283291807. [DOI] [PubMed] [Google Scholar]
  12. Henske E. P., Neumann H. P., Scheithauer B. W., Herbst E. W., Short M. P., Kwiatkowski D. J. Loss of heterozygosity in the tuberous sclerosis (TSC2) region of chromosome band 16p13 occurs in sporadic as well as TSC-associated renal angiomyolipomas. Genes Chromosomes Cancer. 1995 Aug;13(4):295–298. doi: 10.1002/gcc.2870130411. [DOI] [PubMed] [Google Scholar]
  13. Henske E. P., Scheithauer B. W., Short M. P., Wollmann R., Nahmias J., Hornigold N., van Slegtenhorst M., Welsh C. T., Kwiatkowski D. J. Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am J Hum Genet. 1996 Aug;59(2):400–406. [PMC free article] [PubMed] [Google Scholar]
  14. Hughes J., Ward C. J., Peral B., Aspinwall R., Clark K., San Millán J. L., Gamble V., Harris P. C. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet. 1995 Jun;10(2):151–160. doi: 10.1038/ng0695-151. [DOI] [PubMed] [Google Scholar]
  15. Martin G. M., Ogburn C. E., Colgin L. M., Gown A. M., Edland S. D., Monnat R. J., Jr Somatic mutations are frequent and increase with age in human kidney epithelial cells. Hum Mol Genet. 1996 Feb;5(2):215–221. doi: 10.1093/hmg/5.2.215. [DOI] [PubMed] [Google Scholar]
  16. Mochizuki T., Wu G., Hayashi T., Xenophontos S. L., Veldhuisen B., Saris J. J., Reynolds D. M., Cai Y., Gabow P. A., Pierides A. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996 May 31;272(5266):1339–1342. doi: 10.1126/science.272.5266.1339. [DOI] [PubMed] [Google Scholar]
  17. Peral B., Gamble V., San Millán J. L., Strong C., Sloane-Stanley J., Moreno F., Harris P. C. Splicing mutations of the polycystic kidney disease 1 (PKD1) gene induced by intronic deletion. Hum Mol Genet. 1995 Apr;4(4):569–574. doi: 10.1093/hmg/4.4.569. [DOI] [PubMed] [Google Scholar]
  18. Peral B., Ong A. C., San Millán J. L., Gamble V., Rees L., Harris P. C. A stable, nonsense mutation associated with a case of infantile onset polycystic kidney disease 1 (PKD1). Hum Mol Genet. 1996 Apr;5(4):539–542. doi: 10.1093/hmg/5.4.539. [DOI] [PubMed] [Google Scholar]
  19. Peral B., San Millán J. L., Ong A. C., Gamble V., Ward C. J., Strong C., Harris P. C. Screening the 3' region of the polycystic kidney disease 1 (PKD1) gene reveals six novel mutations. Am J Hum Genet. 1996 Jan;58(1):86–96. [PMC free article] [PubMed] [Google Scholar]
  20. Peters D. J., Sandkuijl L. A. Genetic heterogeneity of polycystic kidney disease in Europe. Contrib Nephrol. 1992;97:128–139. doi: 10.1159/000421651. [DOI] [PubMed] [Google Scholar]
  21. Reeders S. T. Multilocus polycystic disease. Nat Genet. 1992 Jul;1(4):235–237. doi: 10.1038/ng0792-235. [DOI] [PubMed] [Google Scholar]
  22. San Millán J. L., Viribay M., Peral B., Martínez I., Weissenbach J., Moreno F. Refining the localization of the PKD2 locus on chromosome 4q by linkage analysis in Spanish families with autosomal dominant polycystic kidney disease type 2. Am J Hum Genet. 1995 Jan;56(1):248–253. [PMC free article] [PubMed] [Google Scholar]
  23. Shen Y., Kozman H. M., Thompson A., Phillips H. A., Holman K., Nancarrow J., Lane S., Chen L. Z., Apostolou S., Doggett N. A. A PCR-based genetic linkage map of human chromosome 16. Genomics. 1994 Jul 1;22(1):68–76. doi: 10.1006/geno.1994.1346. [DOI] [PubMed] [Google Scholar]
  24. Snarey A., Thomas S., Schneider M. C., Pound S. E., Barton N., Wright A. F., Somlo S., Germino G. G., Harris P. C., Reeders S. T. Linkage disequilibrium in the region of the autosomal dominant polycystic kidney disease gene (PKD1). Am J Hum Genet. 1994 Aug;55(2):365–371. [PMC free article] [PubMed] [Google Scholar]
  25. Tada S., Yamagishi J., Kobayashi H., Hata Y., Kobari T. The incidence of simple renal cyst by computed tomography. Clin Radiol. 1983 Jul;34(4):437–439. doi: 10.1016/s0009-9260(83)80238-4. [DOI] [PubMed] [Google Scholar]
  26. Thrash-Bingham C. A., Salazar H., Freed J. J., Greenberg R. E., Tartof K. D. Genomic alterations and instabilities in renal cell carcinomas and their relationship to tumor pathology. Cancer Res. 1995 Dec 15;55(24):6189–6195. [PubMed] [Google Scholar]
  27. Turco A. E., Rossetti S., Bresin E., Corra S., Gammaro L., Maschio G., Pignatti P. F. A novel nonsense mutation in the PKD1 gene (C3817T) is associated with autosomal dominant polycystic kidney disease (ADPKD) in a large three-generation Italian family. Hum Mol Genet. 1995 Aug;4(8):1331–1335. doi: 10.1093/hmg/4.8.1331. [DOI] [PubMed] [Google Scholar]
  28. Ward C. J., Turley H., Ong A. C., Comley M., Biddolph S., Chetty R., Ratcliffe P. J., Gattner K., Harris P. C. Polycystin, the polycystic kidney disease 1 protein, is expressed by epithelial cells in fetal, adult, and polycystic kidney. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1524–1528. doi: 10.1073/pnas.93.4.1524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weinberg R. A. Tumor suppressor genes. Science. 1991 Nov 22;254(5035):1138–1146. doi: 10.1126/science.1659741. [DOI] [PubMed] [Google Scholar]
  30. Wilson P. D. Aberrant epithelial cell growth in autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1991 Jun;17(6):634–637. doi: 10.1016/s0272-6386(12)80338-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES