Abstract
Preclinical arterial gene transfer studies with adenoviral vectors are typically performed in laboratory animals that lack immunity to adenovirus. However, human patients are likely to have prior exposures to adenovirus that might affect: (a) the success of arterial gene transfer; (b) the duration of recombinant gene expression; and (c) the likelihood of a destructive immune response to transduced cells. We confirmed a high prevalence (57%) in adult humans of neutralizing antibodies to adenovirus type 5. We then used a rat model to establish a central role for the immune system in determining the success as well as the duration of recombinant gene expression after adenovirus-mediated gene transfer into isolated arterial segments. Vector-mediated recombinant gene expression, which was successful in naive rats and prolonged by immunosuppression, was unsuccessful in the presence of established immunity to adenovirus. 4 d of immunosuppressive therapy permitted arterial gene transfer and expression in immune rats, but at decreased levels. Ultraviolet-irradiated adenoviral vectors, which mimic advanced-generation vectors (reduced viral gene expression and relatively preserved capsid function), were less immunogenic than were nonirradiated vectors. A primary exposure to ultraviolet-irradiated (but not nonirradiated) vectors permitted expression of a recombinant gene after redelivery of the same vector. In conclusion, arterial gene transfer with current type 5 adenoviral vectors is unlikely to result in significant levels of gene expression in the majority of humans. Both immunosuppression and further engineering of the vector genome to decrease expression of viral genes show promise in circumventing barriers to adenovirus-mediated arterial gene transfer.
Full Text
The Full Text of this article is available as a PDF (277.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bersot T. P., Russell S. J., Thatcher S. R., Pomernacki N. K., Mahley R. W., Weisgraber K. H., Innerarity T. L., Fox C. S. A unique haplotype of the apolipoprotein B-100 allele associated with familial defective apolipoprotein B-100 in a Chinese man discovered during a study of the prevalence of this disorder. J Lipid Res. 1993 Jul;34(7):1149–1154. [PubMed] [Google Scholar]
- Chang M. W., Barr E., Seltzer J., Jiang Y. Q., Nabel G. J., Nabel E. G., Parmacek M. S., Leiden J. M. Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science. 1995 Jan 27;267(5197):518–522. doi: 10.1126/science.7824950. [DOI] [PubMed] [Google Scholar]
- Cotten M., Saltik M., Kursa M., Wagner E., Maass G., Birnstiel M. L. Psoralen treatment of adenovirus particles eliminates virus replication and transcription while maintaining the endosomolytic activity of the virus capsid. Virology. 1994 Nov 15;205(1):254–261. doi: 10.1006/viro.1994.1641. [DOI] [PubMed] [Google Scholar]
- Crystal R. G., McElvaney N. G., Rosenfeld M. A., Chu C. S., Mastrangeli A., Hay J. G., Brody S. L., Jaffe H. A., Eissa N. T., Danel C. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet. 1994 Sep;8(1):42–51. doi: 10.1038/ng0994-42. [DOI] [PubMed] [Google Scholar]
- Dai Y., Schwarz E. M., Gu D., Zhang W. W., Sarvetnick N., Verma I. M. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1401–1405. doi: 10.1073/pnas.92.5.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Jonge M. W., De Leij L., Mesander G., Deenen G. J., Opstelten D., Kroese F. G., van Imhoff G. W., Nieuwenhuis P., The T. H. LAMA tumor in the rat as an experimental model for pre-B-cell leukemia. Cancer Res. 1989 Oct 15;49(20):5682–5688. [PubMed] [Google Scholar]
- Dong J. Y., Wang D., Van Ginkel F. W., Pascual D. W., Frizzell R. A. Systematic analysis of repeated gene delivery into animal lungs with a recombinant adenovirus vector. Hum Gene Ther. 1996 Feb 10;7(3):319–331. doi: 10.1089/hum.1996.7.3-319. [DOI] [PubMed] [Google Scholar]
- Engelhardt J. F., Litzky L., Wilson J. M. Prolonged transgene expression in cotton rat lung with recombinant adenoviruses defective in E2a. Hum Gene Ther. 1994 Oct;5(10):1217–1229. doi: 10.1089/hum.1994.5.10-1217. [DOI] [PubMed] [Google Scholar]
- Engelhardt J. F., Ye X., Doranz B., Wilson J. M. Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6196–6200. doi: 10.1073/pnas.91.13.6196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher K. J., Choi H., Burda J., Chen S. J., Wilson J. M. Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology. 1996 Mar 1;217(1):11–22. doi: 10.1006/viro.1996.0088. [DOI] [PubMed] [Google Scholar]
- Flomenberg P., Piaskowski V., Truitt R. L., Casper J. T. Characterization of human proliferative T cell responses to adenovirus. J Infect Dis. 1995 May;171(5):1090–1096. doi: 10.1093/infdis/171.5.1090. [DOI] [PubMed] [Google Scholar]
- Flugelman M. Y., Jaklitsch M. T., Newman K. D., Casscells W., Bratthauer G. L., Dichek D. A. Low level in vivo gene transfer into the arterial wall through a perforated balloon catheter. Circulation. 1992 Mar;85(3):1110–1117. doi: 10.1161/01.cir.85.3.1110. [DOI] [PubMed] [Google Scholar]
- Guzman R. J., Hirschowitz E. A., Brody S. L., Crystal R. G., Epstein S. E., Finkel T. In vivo suppression of injury-induced vascular smooth muscle cell accumulation using adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10732–10736. doi: 10.1073/pnas.91.22.10732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guzman R. J., Lemarchand P., Crystal R. G., Epstein S. E., Finkel T. Efficient and selective adenovirus-mediated gene transfer into vascular neointima. Circulation. 1993 Dec;88(6):2838–2848. doi: 10.1161/01.cir.88.6.2838. [DOI] [PubMed] [Google Scholar]
- Kay M. A., Holterman A. X., Meuse L., Gown A., Ochs H. D., Linsley P. S., Wilson C. B. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig administration. Nat Genet. 1995 Oct;11(2):191–197. doi: 10.1038/ng1095-191. [DOI] [PubMed] [Google Scholar]
- Knowles M. R., Hohneker K. W., Zhou Z., Olsen J. C., Noah T. L., Hu P. C., Leigh M. W., Engelhardt J. F., Edwards L. J., Jones K. R. A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N Engl J Med. 1995 Sep 28;333(13):823–831. doi: 10.1056/NEJM199509283331302. [DOI] [PubMed] [Google Scholar]
- Kochanek S., Clemens P. R., Mitani K., Chen H. H., Chan S., Caskey C. T. A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5731–5736. doi: 10.1073/pnas.93.12.5731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leclerc G., Gal D., Takeshita S., Nikol S., Weir L., Isner J. M. Percutaneous arterial gene transfer in a rabbit model. Efficiency in normal and balloon-dilated atherosclerotic arteries. J Clin Invest. 1992 Sep;90(3):936–944. doi: 10.1172/JCI115970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee S. W., Trapnell B. C., Rade J. J., Virmani R., Dichek D. A. In vivo adenoviral vector-mediated gene transfer into balloon-injured rat carotid arteries. Circ Res. 1993 Nov;73(5):797–807. doi: 10.1161/01.res.73.5.797. [DOI] [PubMed] [Google Scholar]
- Lemarchand P., Jones M., Yamada I., Crystal R. G. In vivo gene transfer and expression in normal uninjured blood vessels using replication-deficient recombinant adenovirus vectors. Circ Res. 1993 May;72(5):1132–1138. doi: 10.1161/01.res.72.5.1132. [DOI] [PubMed] [Google Scholar]
- Lim C. S., Chapman G. D., Gammon R. S., Muhlestein J. B., Bauman R. P., Stack R. S., Swain J. L. Direct in vivo gene transfer into the coronary and peripheral vasculatures of the intact dog. Circulation. 1991 Jun;83(6):2007–2011. doi: 10.1161/01.cir.83.6.2007. [DOI] [PubMed] [Google Scholar]
- Liu J. M., Fujii H., Green S. W., Komatsu N., Young N. S., Shimada T. Indiscriminate activity from the B19 parvovirus p6 promoter in nonpermissive cells. Virology. 1991 May;182(1):361–364. doi: 10.1016/0042-6822(91)90682-2. [DOI] [PubMed] [Google Scholar]
- Lynch C. M., Clowes M. M., Osborne W. R., Clowes A. W., Miller A. D. Long-term expression of human adenosine deaminase in vascular smooth muscle cells of rats: a model for gene therapy. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1138–1142. doi: 10.1073/pnas.89.3.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitani K., Graham F. L., Caskey C. T., Kochanek S. Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3854–3858. doi: 10.1073/pnas.92.9.3854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nabel E. G., Nabel G. J. Complex models for the study of gene function in cardiovascular biology. Annu Rev Physiol. 1994;56:741–761. doi: 10.1146/annurev.ph.56.030194.003521. [DOI] [PubMed] [Google Scholar]
- Newman K. D., Dunn P. F., Owens J. W., Schulick A. H., Virmani R., Sukhova G., Libby P., Dichek D. A. Adenovirus-mediated gene transfer into normal rabbit arteries results in prolonged vascular cell activation, inflammation, and neointimal hyperplasia. J Clin Invest. 1995 Dec;96(6):2955–2965. doi: 10.1172/JCI118367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicolls M. R., Aversa G. G., Pearce N. W., Spinelli A., Berger M. F., Gurley K. E., Hall B. M. Induction of long-term specific tolerance to allografts in rats by therapy with an anti-CD3-like monoclonal antibody. Transplantation. 1993 Mar;55(3):459–468. doi: 10.1097/00007890-199303000-00001. [DOI] [PubMed] [Google Scholar]
- Ohno T., Gordon D., San H., Pompili V. J., Imperiale M. J., Nabel G. J., Nabel E. G. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science. 1994 Aug 5;265(5173):781–784. doi: 10.1126/science.8047883. [DOI] [PubMed] [Google Scholar]
- Rade J. J., Schulick A. H., Virmani R., Dichek D. A. Local adenoviral-mediated expression of recombinant hirudin reduces neointima formation after arterial injury. Nat Med. 1996 Mar;2(3):293–298. doi: 10.1038/nm0396-293. [DOI] [PubMed] [Google Scholar]
- Roessler B. J., Allen E. D., Wilson J. M., Hartman J. W., Davidson B. L. Adenoviral-mediated gene transfer to rabbit synovium in vivo. J Clin Invest. 1993 Aug;92(2):1085–1092. doi: 10.1172/JCI116614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roselaar S. E., Schonfeld G., Daugherty A. Enhanced development of atherosclerosis in cholesterol-fed rabbits by suppression of cell-mediated immunity. J Clin Invest. 1995 Sep;96(3):1389–1394. doi: 10.1172/JCI118174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulick A. H., Dong G., Newman K. D., Virmani R., Dichek D. A. Endothelium-specific in vivo gene transfer. Circ Res. 1995 Sep;77(3):475–485. doi: 10.1161/01.res.77.3.475. [DOI] [PubMed] [Google Scholar]
- Schulick A. H., Newman K. D., Virmani R., Dichek D. A. In vivo gene transfer into injured carotid arteries. Optimization and evaluation of acute toxicity. Circulation. 1995 May 1;91(9):2407–2414. doi: 10.1161/01.cir.91.9.2407. [DOI] [PubMed] [Google Scholar]
- Seth P., Rosenfeld M., Higginbotham J., Crystal R. G. Mechanism of enhancement of DNA expression consequent to cointernalization of a replication-deficient adenovirus and unmodified plasmid DNA. J Virol. 1994 Feb;68(2):933–940. doi: 10.1128/jvi.68.2.933-940.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith T. A., Mehaffey M. G., Kayda D. B., Saunders J. M., Yei S., Trapnell B. C., McClelland A., Kaleko M. Adenovirus mediated expression of therapeutic plasma levels of human factor IX in mice. Nat Genet. 1993 Dec;5(4):397–402. doi: 10.1038/ng1293-397. [DOI] [PubMed] [Google Scholar]
- Steg P. G., Feldman L. J., Scoazec J. Y., Tahlil O., Barry J. J., Boulechfar S., Ragot T., Isner J. M., Perricaudet M. Arterial gene transfer to rabbit endothelial and smooth muscle cells using percutaneous delivery of an adenoviral vector. Circulation. 1994 Oct;90(4):1648–1656. doi: 10.1161/01.cir.90.4.1648. [DOI] [PubMed] [Google Scholar]
- Thürmann P. A., Sonnenburg-Chatzopoulos C., Lissner R. Pharmacokinetic characteristics and tolerability of a novel intravenous immunoglobulin preparation. Eur J Clin Pharmacol. 1995;49(3):237–242. doi: 10.1007/BF00192385. [DOI] [PubMed] [Google Scholar]
- Tripathy S. K., Black H. B., Goldwasser E., Leiden J. M. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat Med. 1996 May;2(5):545–550. doi: 10.1038/nm0596-545. [DOI] [PubMed] [Google Scholar]
- Ueno H., Li J. J., Tomita H., Yamamoto H., Pan Y., Kanegae Y., Saito I., Takeshita A. Quantitative analysis of repeat adenovirus-mediated gene transfer into injured canine femoral arteries. Arterioscler Thromb Vasc Biol. 1995 Dec;15(12):2246–2253. doi: 10.1161/01.atv.15.12.2246. [DOI] [PubMed] [Google Scholar]
- Wilmott R. W., Amin R. S., Perez C. R., Wert S. E., Keller G., Boivin G. P., Hirsch R., De Inocencio J., Lu P., Reising S. F. Safety of adenovirus-mediated transfer of the human cystic fibrosis transmembrane conductance regulator cDNA to the lungs of nonhuman primates. Hum Gene Ther. 1996 Feb 10;7(3):301–318. doi: 10.1089/hum.1996.7.3-301. [DOI] [PubMed] [Google Scholar]
- Yang Y., Ertl H. C., Wilson J. M. MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity. 1994 Aug;1(5):433–442. doi: 10.1016/1074-7613(94)90074-4. [DOI] [PubMed] [Google Scholar]
- Yang Y., Li Q., Ertl H. C., Wilson J. M. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol. 1995 Apr;69(4):2004–2015. doi: 10.1128/jvi.69.4.2004-2015.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Y., Nunes F. A., Berencsi K., Furth E. E., Gönczöl E., Wilson J. M. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4407–4411. doi: 10.1073/pnas.91.10.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Y., Nunes F. A., Berencsi K., Gönczöl E., Engelhardt J. F., Wilson J. M. Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nat Genet. 1994 Jul;7(3):362–369. doi: 10.1038/ng0794-362. [DOI] [PubMed] [Google Scholar]
- Yoshimura K., Rosenfeld M. A., Seth P., Crystal R. G. Adenovirus-mediated augmentation of cell transfection with unmodified plasmid vectors. J Biol Chem. 1993 Feb 5;268(4):2300–2303. [PubMed] [Google Scholar]
- Zabner J., Couture L. A., Gregory R. J., Graham S. M., Smith A. E., Welsh M. J. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell. 1993 Oct 22;75(2):207–216. doi: 10.1016/0092-8674(93)80063-k. [DOI] [PubMed] [Google Scholar]